Senior Machine Learning Engineer

Burns Sheehan
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer - Computer Vision

Senior Machine Learning Engineer

Senior Machine Learning Engineer - Gen AI

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer


  • £85,000-£110,000
  • Start-Up
  • Remote based with occasional meet ups in the UK
  • Chance to work with industry leading experts


We are currently partnered with a revolutionary start-up looking to bring in a Senior Machine Learning engineering to work with the co-founders and newly appointed CTO. As a tech-driven AI startup, we are at the forefront of cutting-edge technology, leveraging Machine Learning, Generative AI, and real-time data analysis to create impactful solutions. If you’re passionate about innovation and thrive on ambitious goals, you’ll feel right at home here.


The co founders believe that small teams achieve big things. They want to empower individuals create extraordinary outcomes. They are assembling a world-class AI and Engineering team where every contributor has the opportunity to leave a profound impact.


The business is currently in stealth mode although a sprinkle of information we can provide is that the business are building a next generation platform to help improve customer experiences on an unprecedented scale systems process billions of real-time data points daily, combining advanced ML models and large language models to deliver context-aware experiences worldwide. Through rapid model optimisation and continuous experimentation, the company drives engagement through intelligent recommendations and personalised content, delivering over 10%+ revenue growth for their clients & partners.


Key Responsibilities:


As a Machine Learning Engineer, you'll be instrumental in shaping our technical foundation and ML infrastructure. You'll work directly with the founding team to build and scale our AI-driven platform from the ground up.


  • Own the end-to-end ML infrastructure, from initial architecture decisions to production deployment, setting the technical standards for our growing team.
  • Take the lead in bridging research and production, turning innovative ML concepts into scalable, production-ready systems that process billions of real-time data points.
  • Design and implement robust ML pipelines that can handle our rapidly growing data volume while maintaining exceptional performance.
  • Build and optimize core model components with a focus on real-world impact, directly contributing to our mission of transforming gaming experiences.
  • Drives incremental improvements (across quality, ease of (re)use, performance) within the data, from PoC to production-grade systems that can scale reliably.
  • Establish best practices for code quality, testing, and documentation that will shape our engineering culture .
  • Create and maintain scalable data pipelines and APIs that can handle increasing complexity while maintaining reliability.
  • Works as part of a multi-disciplinary team, composed of data scientists, front-end and back-end engineers, product managers, and analysts.


As an early team member, you'll have a unique opportunity to influence our technical direction and growth. Some travel may be required as we build our distributed team.


Core Skills;


  • Strong track record of building and deploying ML systems in production, with hands-on experience in real-time, high-throughput environments.
  • Strong foundation in applied ML frameworks and data science tools and libraries.
  • Deep expertise in Python, with a focus on ML engineering best practices and production-grade code architecture.
  • Experience with modern cloud platforms (AWS/GCP/Azure) and MLOps practices, including containerization and CI/CD for ML workflows.
  • Practical exposure to modern cloud data platforms, with direct experience delivering data centric solutions for mission critical use cases; as well as driving innovation PoV style delivery and associated engineering/design principles.
  • Experience in distributed microservice architecture and REST API development. Hands-on experience with streaming architectures and real-time processing systems.
  • Track record of making architectural decisions that balance innovation with reliability.
  • Demonstrated ability to work independently and drive technical initiatives from concept to production.
  • Evidence of motivation to learn, and curiosity around modern approaches to ML engineering. Ability to discuss and debate relative merits and opportunities.


Desired

  • Experience with LLMs and modern NLP techniques. Building and optimizing RAG systems, working with embedding models and vector stores.
  • Background in scaling ML systems from prototype to production.
  • Previous experience in a fast paced start-up environment.
  • Understanding of ML monitoring and observability best practices.


This role isnt for a beginner, it is for someone who has the ability to solve problems, create solutions and really help a super exciting business become the next big rocket ship.


Apply with your most recent CV to be considered for shortlisting.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Navigating AI Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

The field of Artificial Intelligence (AI) is growing at an astonishing pace, offering a wealth of opportunities for talented professionals. From machine learning engineers and data scientists to natural language processing (NLP) specialists and computer vision experts, the demand for skilled AI practitioners continues to surge in the UK and globally. AI career fairs present a unique opportunity to connect face-to-face with potential employers, discover cutting-edge innovations, and learn more about the rapidly evolving landscape of data-driven technologies. Yet, attending these events can feel overwhelming: dozens of companies, queues of applicants, and only minutes to make a great first impression. In this detailed guide, we’ll walk you through strategies to prepare for AI career fairs, provide you with key questions to ask, highlight examples of relevant UK events, and reveal the critical follow-up tactics that will help you stand out from the crowd. By the end, you’ll be armed with the knowledge and confidence to land your dream role in the ever-growing world of Artificial Intelligence.

Common Pitfalls AI Job Seekers Face and How to Avoid Them

The global demand for Artificial Intelligence (AI) specialists continues to rise, with organisations across industries keen to implement machine learning, deep learning, and data-driven insights into their operations. Yet, as the market for AI professionals flourishes, so does the level of competition among candidates. Talented individuals who may otherwise be qualified often stumble on common pitfalls that can hinder their success in securing an AI-related role. These pitfalls can lie in their CV, interview approach, job search strategy, or even their understanding of what AI employers are looking for. This article aims to help job seekers in the UK’s AI sector—whether you’re fresh out of university, transitioning into AI from another field, or looking for a senior-level position—avoid the most common mistakes. We’ll discuss how to stand out in a crowded AI job market by improving your CV, acing interviews, and conducting an effective job search. Read on to discover the typical missteps AI professionals make when seeking employment and learn the strategies to avoid them.

Career Paths in Artificial Intelligence: From Research to Management – How to Progress from Technical Roles to Leadership and Beyond

Artificial Intelligence (AI) stands at the forefront of technological innovation, shaping everything from healthcare diagnostics to autonomous vehicles and natural language processing. With the UK widely recognised as a growing hub for AI research and development, there has never been a better time to explore a career in artificial intelligence—or to advance your current trajectory within the field. A key question that often arises is: How can professionals move from hands-on technical roles in AI to leadership and management positions? This comprehensive guide will walk you through the evolving career landscape in AI, from entry-level posts to executive roles. We will examine in-demand skills, recommended pathways for professional development, and strategies to help you seamlessly ascend from technical responsibilities to strategic leadership. Whether you’re a recent graduate, a self-taught data whizz, or an experienced machine learning engineer aspiring to lead teams, this article will provide you with practical insights tailored to the UK’s vibrant AI sector.