Senior Machine Learning Engineer

Haggerston
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer - London - Up to £120,000

With a focus on hands-on model building and implementation, the candidate will work closely with a Data Scientist and be part of an R&D team of seven, including the Head of Engineering, Product, and five engineers. This is a standalone role, and the engineer will be expected to be largely self-sufficient.

Responsibilities and Key Deliverables

  • Develop and maintain a ranking recommendation model that suggests recipes to users based on prior preferences, effectively serving as a product’s main feature.
  • Greenfield, meaning the engineer will build the machine learning models from scratch.
  • Full responsibility for ML model development, deployment, maintenance, and product integration.
  • The candidate must advise on frameworks, architect solutions, and ensure models are product-oriented and sustainable for the long term.

    Desired Candidate Profile
  • Minimum 4-5 years of hands-on experience with machine learning in a commercial environment, with strong decision-making capabilities regarding model architecture and deployment.
  • Preference for candidates with experience in B2C, subscription-based, or content-heavy start-ups, though experience with similar consumer products will also be considered.
  • Highly autonomous, with the ability to manage both product scoping and technical execution. The candidate should understand the demands of an early-stage product and be comfortable with an evolving role in a lean, start-up-style environment.

    Qualifications
  • The focus is on hands-on experience over academic background candidates should be skilled in implementing practical ML solutions.
  • A strong preference for candidates who are product-driven, with the ability to make decisions that align with long-term product goals.

    Interview Process
  1. Screening Call (30 mins) - Focus on culture fit and general understanding.
  2. Data Engineering Interview (45-60 mins) - Includes a take-home data task that candidates will analyse and present to the hiring manager and Data Scientist.
  3. Architecture Interview (45-60 mins) - Candidates will outline their approach to model architecture and decision-making.
  4. Offer Stage

    The salary on offer is between £90,000 to £120,000.

    If you are interested in the above, please apply or submit your CV to (url removed)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.