Senior Machine Learning Engineer

Gravitas Recruitment Group (Global) Ltd
Sherborne
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Machine Learning Engineer | Gen AI | LLM | RAG | Financial | FinTech | Wealth | Python


Gravitas has partnered with a well funded FinTech Start-Up specialising in building Gen AI financial advisory solutions for enterprise businesses.


As theSenior Machine Learning Engineerspecialising inGenerative AI, you will be at the helm of cutting-edge AI projects that will fundamentally reshape how financial decisions are made. Your work will directly influence how personalised, real-time financial insights are delivered, enabling smarter, more efficient advisory services and improving the overall customer experience. This is a unique opportunity to lead transformative AI solutions in a fast-growing sector.


Position:Senior Machine Learning Engineer

Salary:Negotiable depending on experience

Benefits:Equity + Benefits package

Location:Sherborne / Remote (occasional travel to London to be on client site)

Sector:FinTech


The day to day:

  • Lead the development of innovativeGenerative AI modelstailored to the wealth management industry.
  • Drive theoptimisation of large language models (LLMs)to extract deeper insights and enhance prediction capabilities for financial applications.
  • Spearhead the implementation ofRetrieval-Augmented Generation (RAG)systems, improving the AI’s performance in specific financial scenarios.
  • Lead initiatives formodel fine-tuning, ensuring generative models perform optimally in real-world financial contexts.
  • Design and build scalableAI pipelinescapable of managing and processing complex financial data.
  • Innovate in the field ofConversational AI, enhancing client-advisor interactions with intelligent, real-time decision-making systems.
  • Develop and deployAI-driven systemscapable of real-time financial data analysis and actionable insights.
  • Write clean, maintainable, and efficient code, establishing best practices for AI infrastructure within the company.
  • Collaborate closely with cross-functional teams to integrate AI solutions into the core platform.


Essential skills / experience:

  • 6+ yearsof experience as aMachine Learning Engineer, with a strong track record of impactful AI projects.
  • Expertise inGenerative AI, with at least1 yearof hands-on experience working with generative models.
  • Strong experience withRetrieval-Augmented Generation (RAG)and other cutting-edge AI techniques.
  • Proven success in fine-tuning models for specialized applications, particularly in financial services or data-driven domains.
  • Advanced proficiency inPythonand deep learning frameworks likePyTorchorTensorFlow.
  • Strong experience withMLOps,ML pipelines, and deployment on cloud platforms likeAWS,GCP, orAzure.
  • Solid foundation in software engineering principles, ensuring that code is efficient, scalable, and maintainable.


Desirable skills / experience:

  • Experience across a range ofGenerative AI modelsand architectures, with an understanding of their practical applications.
  • Familiarity with theFinTechorwealth managementsectors, and an understanding of the industry's unique challenges and opportunities.
  • Contributions to theAI community, such as research papers, open-source projects, or speaking engagements.
  • Knowledge ofcontainerisation technologieslikeDockerandKubernetesfor seamless deployment.


We are meeting with the hiring team on Tuesday 12th November to discuss potential candidates, with interviews scheduled for next week.


Unfortunately this client is unable to offer sponsorship

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.