Senior Engineer, Data Engineering

Velocity Tech
Nottingham
1 year ago
Applications closed

Related Jobs

View all jobs

Senior DataOps Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer (MLOps)

Senior Lead Analyst - Data Science_ AI/ML & Gen AI

Senior MLOPs Engineer

I have partnered with a global renewable technology business who are looking for a Senior Data Engineer. You will play a pivotal role in developing and maintaining the data infrastructure that powers our advanced analytics and solution development. Working within our innovative team, you will design and build high-performance batch and real-time data pipelines, create ETL processes, and transform raw data into insightful, consumable datasets for both technical and non-technical stakeholders. You’ll collaborate with engineering, analytics, and data science teams to deploy machine learning models, automate workflows, and ensure our data platforms are secure, scalable, and optimized for performance. This is an opportunity to immerse yourself in cloud technologies, leverage AWS, and work with a talented, multidisciplinary team to drive impact in the global wind energy space. Strong expertise in AWS cloud platforms and data engineering tools. Proficiency in building and maintaining data lake/warehouse solutions. Advanced skills in SQL and relational database design. Experience with data ingestion and ETL tools. Strong programming skills in Python or other object-oriented languages. Familiarity with data pipeline and workflow management tools. This role requires you to be onsite in Nottingham 3 days a week.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.