SENIOR DATA SCIENTIST - Computer Vision - Hybrid

ARCA
Bristol
8 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist - National Security (TIRE) based in Cheltenham/Hybrid

Senior Data Scientist - Computer Vision / AI Data Scientist

HYBRID - BRISTOL

2 positions available!


Unlock the Power of AI Innovation!

Join my client, an AI trailblazer with an international presence, helping industries like healthcare, sports, manufacturing, and agriculture transform through advanced artificial intelligence solutions. As a Data Scientist specialising in Computer Vision, you'll play a pivotal role in developing machine learning products that redefine what AI can achieve across diverse industries.


Why You Should Apply

  • Be part of a revolutionary AI startup shaping the future across multiple sectors
  • Work on cutting-edge computer vision projects with real-world impact
  • Collaborate with experts across business, product, and engineering teams
  • Contribute directly to deploying AI solutions with enterprise clients


What You’ll Be Doing

  • Develop deep learning models for a range of computer vision tasks
  • Define and implement assessment criteria to measure solution performance
  • Stay on top of and apply recent advancements in deep learning and computer vision
  • Support and maintain our suite of machine learning products


About You

  • Demonstrable experience with Computer Vision
  • Skilled in deep learning algorithms applied to computer vision challenges
  • Knowledgeable about key architectures like Vision Transformers, DeepLabv3, and SegFormer
  • Proficient in Python and ML tools, including Scikit-Learn, NumPy, Pandas, PyTorch, TensorFlow, or Keras
  • Capable of applying machine learning to solve real-world problems



Please apply via the link for immediate consideration!

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.