Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Applied Scientist, Amazon Ads

Amazon Development Centre (Scotland) Limited
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Applied Scientist, Central Machine Learning

Data Scientist

Data Scientist

Machine Learning Engineer, Controllable GAIA

Senior Applied Data Scientist (FTC until end of March 2026)

Senior Applied Data Scientist

Re-imagining the realms of what’s possible in advertising.

Amazon is re-imagining advertising. Amazon Ads operates at the intersection of eCommerce and advertising and offering a rich array of advertising solutions and audience insights so businesses and brands can create relevant campaigns that produce measurable results.

At Amazon Ads, you can build models that impact millions every day. And we’re passionate about solving real-world problems while using cutting-edge machine learning and artificial intelligence to do this.

For example, our applied science teams leverage a variety of advanced machine learning and cloud computing techniques to power Amazon's advertising offerings. This includes building algorithms and cloud services using clustering, deep neural networks, and other ML approaches to make ads more relevant while respecting privacy. They develop machine learning models to predict ad outcomes and select the optimal ad for each shopper, context, and advertiser objective, leveraging techniques like multi-task learning, bandit/reinforcement learning, counterfactual estimation, and low-latency extreme ML. The teams also utilize Spark, EMR, and Elasticsearch to extract insights from big data and deliver recommendations to advertisers at scale, continuously improving through offline analysis and impact evaluation. Additionally, they apply generative AI models for dynamic creative optimization and video experimentation and automation.

Underpinning these efforts are unique technical challenges, such as operating at unprecedented scale (hundreds of thousands of requests per second with 40ms latency) while respecting privacy and customer trust guarantees, and solving a wide variety of complex computational advertising problems related to traffic quality, viewability, brand safety, and more.


Help us take innovation in advertising to the next level.

Our teams are based in our fast-growing tech hubs in London and Edinburgh. Learn more about Amazon Ads, employee stories and available opportunities here:


Key job responsibilities
* Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both analysis and business judgment.
* Collaborate with software engineering teams to integrate successful experiments into large-scale, highly complex Amazon production systems.
* Promote the culture of experimentation and applied science at Amazon.
* Demonstrate ability to meet deadlines while managing multiple projects.
* Excel communication and presentation skills working with multiple peer groups and different levels of management
* Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles
* Develop a deep and wide understanding of large ad tech solutions to which you will contribute, and how they interact with components owned by other teams.
* Anticipate obstacles and look around corners, effectively prioritising work, solving trade-offs and influencing the development of advertising products beyond the scope of your immediate team.

We are open to hiring candidates to work out of one of the following locations:

Edinburgh, MLN, GBR | London, GBR

BASIC QUALIFICATIONS

- Experience programming in Java, C++, Python or related language
- Experience with neural deep learning methods and machine learning
- Experience in building machine learning models for business application
- Experience in applied research
- Master's degree
- PhD in engineering, technology, computer science, machine learning, robotics, operations research, statistics, mathematics or equivalent quantitative field

PREFERRED QUALIFICATIONS

- Experience with modeling tools such as R, scikit-learn, Spark MLLib, MxNet, Tensorflow, numpy, scipy etc.
- Experience with large scale distributed systems such as Hadoop, Spark etc.
- Experience using managed ML/AI solutions
- Experience with conducting research in a corporate setting

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.