AI Data Scientist: Applied Intelligence & Delivery

FactTrace
Cambridge
2 weeks ago
Create job alert
About FactTrace.ai

FactTrace.ai builds AI systems that bring clarity, integrity, and evidence to complex data.


Our focus is not just intelligence, but trust— ensuring that AI outputs can be understood, validated, and relied upon in real‑world decision‑making.


After a period of incubation and research in 2025, FactTrace is now operating as a trading company and going public in January 2026. This next phase is about delivery, real‑world data, and outcomes under scrutiny.


The Role

We are looking for exceptional AI Data Scientists based in the UK who want to work side by side with engineers, validation leads, and the founder, turning advanced models into systems that run reliably in the real world.


This is a fully office-based role in Cambridge. We believe this phase of the company benefits from being in the same room: fast iteration, shared context, and deep collaboration.


This is not a pure research role.


You will be part of a small, senior technical team focused on shipping, validating, and improving models under real constraints.


What You’ll Do

  • Design and develop models for complex, real‑world datasets
  • Translate analytical ideas into deliverable, repeatable outputs
  • Work within an engineering pipeline to ensure models can run reliably
  • Collaborate closely with validation leads to test performance on real‑world data
  • Iterate based on feedback, results, and observed behaviour
  • Clearly document assumptions, limits, and performance
  • Participate in technical reviews focused on learning and improvement

What We’re Looking For

  • PhD, MPhil, or equivalent experience in Computer Science, Engineering, Mathematics, Physics, or a related quantitative field
  • Strong foundation in Python and data science tooling
  • Solid understanding of machine learning concepts and evaluation
  • Comfort working with messy, real‑world data
  • Ability to move from abstract reasoning to concrete implementation
  • A delivery mindset: clear outputs, clear assumptions, clear timelines

Candidates donot need to come from a specific university — we welcome applications from across the UK.


Nice to Have (Not Required)

  • Experience with deep learning, embeddings, or representation learning
  • Familiarity with PyTorch, TensorFlow, or similar frameworks
  • Interest in robustness, evaluation, or data integrity
  • Experience taking work from experimentation into production

Working Style & Location

  • Office-based in Cambridge
  • Close collaboration, fast feedback, shared ownership
  • Suited to people who enjoy building together, in person

Commitment & Growth

  • Full‑time role
  • Start date: asp
  • Competitive salary and early‑stage equity participation
  • Designed for long‑term growth within the core technical team

How to Apply

Please send:



  • Your CV
  • Your GitHub
  • A short note (a few paragraphs is enough) explaining:

    • What draws you to applied data science
    • Why you want to work hands‑on, in person, on real‑world systems



📩


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Scientist - AI Practice Team

Senior Data Scientist - AI Practice Team

Senior Data Scientist

Senior Data Scientist

Data Scientist-Senior Manager

Machine Learning Engineer (Applied AI) (100% Remote in EMEA)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.