Research Engineer - Post-Training

AI Safety Institute
London
2 months ago
Applications closed

Related Jobs

View all jobs

Research Engineer - Machine Learning

Research Engineer - Machine Learning New United Kingdom, London

Research Engineer, Data (Foundational Research, Machine Learning)

Research Engineer - Machine Learning

AI) Machine Learning Research Engineer

Machine Learning Research Engineer

About the Team

The Post-Training Team is dedicated to optimising AI systems to achieve state-of-the-art performance across the various risk domains that AISI focuses on. This is accomplished through a combination of scaffolding, prompting, supervised and RL fine-tuning of the AI models which AISI has access to.

One of the main focuses of our evaluation teams is estimating how new models might affect the capabilities of AI systems in specific domains. To improve confidence in our assessments, we make significant effort to enhance the model's performance in the domains of interest.

For many of our evaluations, this means taking a model we have been given access to and embedding it as part of a wider AI system—for example, in our cybersecurity evaluations, we provide models with access to tools for interacting with the underlying operating system and repeatedly call models to act in such environment. In our evaluations which do not require agentic capabilities, we may use elicitation techniques like fine-tuning and prompt engineering to ensure assessing the model at its full capacity.

About the Role

As a member of this team, you will use cutting-edge machine learning techniques to improve model performance in our domains of interest. The work is split into two sub-teams: Agents and Finetuning. Our Agents sub-team focuses on developing the LLM tools and scaffolding to create highly capable LLM-based agents, while our fine-tuning team builds out fine-tuning pipelines to improve models on our domains of interest.

The Post-Training team is seeking strong Research Engineers to join the team. The priorities of the team include both research-oriented tasks—such as designing new techniques for scaling inference-time computation or developing methodologies for in-depth analysis of agent behaviour—and engineering-oriented tasks—like implementing new tools for our LLM agents or creating pipelines for supporting and fine-tuning large open-source models. We recognise that some technical staff may prefer to span or alternate between engineering and research responsibilities, and this versatility is something we actively look for in our hires.

You’ll receive mentorship and coaching from your manager and the technical leads on your team, and regularly interact with world-class researchers and other exceptional staff, including alumni from Anthropic, DeepMind, OpenAI.

In addition to junior roles, we offer Senior, Staff, and Principal Research Engineer positions for candidates with the requisite seniority and experience.

Person Specification

You may be a good fit if you have some of the following skills, experience and attitudes:

  • Experience conducting empirical machine learning research (e.g. PhD in a technical field and/or papers at top ML conferences), particularly on LLMs.
  • Experience with machine learning engineering, or extensive experience as a software engineer with a strong demonstration of relevant skills/knowledge in the machine learning.
  • An ability to work autonomously and in a self-directed way with high agency, thriving in a constantly changing environment and a steadily growing team, while figuring out the best and most efficient ways to solve a particular problem.

Particularly strong candidates also have the following experience:

  • Building LLM agents in industry or open-source collectives, particularly in areas adjacent to the main interests of one of our workstreams e.g. in-IDE coding assistants, research assistants etc. (for our Agents subteam)
  • Leading research on improving and measuring the capabilities of LLM agents (for our Agents sub-team)
  • Building pipelines for fine-tuning (or pretraining LLMs). Finetuning with RL techniques is particularly relevant (for our Finetuning subteam).
  • Finetuning or pretraining LLMs in a research context, particularly to achieve increased performance in specific domains (for our Finetuning subteam).

Salary & Benefits

We are hiring individuals at all ranges of seniority and experience within the research unit, and this advert allows you to apply for any of the roles within this range. We will discuss and calibrate with you as part of the process. The full range of salaries available is as follows:

  • L3: £65,000 - £75,000
  • L4: £85,000 - £95,000
  • L5: £105,000 - £115,000
  • L6: £125,000 - £135,000
  • L7: £145,000

There are a range of pension options available which can be found through the Civil Service website.

Selection Process

In accordance with the Civil Service Commission rules, the following list contains all selection criteria for the interview process.

Required Experience

We select based on skills and experience regarding the following areas:

  • Research problem selection
  • Research Engineering
  • Writing code efficiently
  • Python
  • Frontier model architecture knowledge
  • Frontier model training knowledge
  • Model evaluations knowledge
  • AI safety research knowledge
  • Written communication
  • Verbal communication
  • Teamwork
  • Interpersonal skills
  • Tackle challenging problems
  • Learn through coaching

Desired Experience

We additionally may factor in experience with any of the areas that our work-streams specialise in:

  • Cyber security
  • Chemistry or Biology
  • Safeguards
  • Safety Cases
  • Societal Impacts

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.