Machine Learning Research Engineer

Knauf Energy Solutions
London
2 weeks ago
Applications closed

Related Jobs

View all jobs

Research Engineer - Post-Training

Research Engineer, Data (Foundational Research, Machine Learning)

Machine Learning / Computer Vision Engineer – Data Scientist

Connectomics Data Analysis Engineer

AI Product Manager

Machine Learning Engineer

Would you thrive in a fast-scaling business, solving novel problems in collaborative teams? Are you interested in developing machine learning products from conception to deployment? If so, you could be the person we are searching for. 


We are an IoT innovator working to scale our product deployments across the UK and EU. We are passionate about developing technology that will change paradigms and contribute to a sustainable future. We are building Virtual Energy Infrastructure using our world-leading machine learning algorithms.


We’re looking for a Machine Learning Research Engineer to work with us in our Data Science and AI Team. In this team, we build custom algorithms that use novel approaches to solve our business needs. You will be working with large, complex, and unique datasets to solve a wide range of difficult statistical, mathematical, and physical engineering problems. 


To achieve this, you will work with cutting-edge technologies in a highly collaborative environment. Key to this role is the ability to envision and design new algorithm products while carefully considering the practicality of rollout, wider strategic implications, and any legal or ethical considerations – and then taking these products from conception to deployment.


This will require strong software engineering expertise and excellent machine learning proficiency. The ideal candidate brings not just technical skills, but an intellectual curiosity and eagerness to expand their knowledge across diverse technical domains.


You will be working with an enthusiastic, agile and highly skilled team to deliver a paradigm-changing technology across Europe with a positive environmental and social impact. Our world-leading algorithmic products are at the core of our business, so as a part of the Data Science and AI Team, you will have a high level of exposure to the wider business. 


Flexible start date


This role is based in our London office, near Liverpool Street (hybrid in-office and work-from-home). 


Experience Level:

  • Hiring at a range of experience levels; 0-4 years of experience


We are looking for:

  • MSc/MSci in a highly quantitative field (Mathematics, Computer Science, Physics, etc)
  • Strong knowledge of Python and appropriate Machine Learning libraries and frameworks
  • Strong analytical and communication skills 
  • Experience using Machine Learning on large datasets 
  • Experience collating, cleaning and visualizing datasets 
  • Ability to work autonomously, conducting research and posing difficult questions in order to build scalable algorithmic solutions to hard problems from the ground up 
  • Enthusiasm to learn and contribute to a culture of learning  
  • Advantageous - PhD (in a highly quantitative field)


What we offer

  • Competitive salary
  • Generous annual leave allowance, excellent benefits package including salary sacrifice car scheme

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.