Principal Machine Learning Engineer, Structural Biology | Pharma/BioTech | Series A - Drug discovery B2B Platform | Fully Remote, EU | £ 850-1200pd, Outside IR35 | 6-12 months Contract Length

Owen Thomas | Pending B Corp
London
1 month ago
Applications closed

Related Jobs

View all jobs

Principal Machine Learning Engineer (London)

Principal Data Engineer

Principal MLOps Engineer - Chase UK

Principal MLOps Engineer - Chase UK

Principal Software Engineer

Principal Machine Learning Developer

Principal Machine Learning Engineer, Structural Biology | Pharma/BioTech | Series A - Drug discovery B2B Platform | Fully Remote, EU | £ 850-1200pd, Outside IR35 | 6-12 months Contract Length

The Client:

A leading organization in the drug discovery field is currently looking for aPrincipal ML Engineerto spearhead the technical direction for their structural biology models. This hands-on, high-impact role offers the opportunity to advance the application of foundational models to complex structural biology challenges.

The successful candidate will work closely with the leadership team, serving as the technical authority on machine learning modeling, architecture, and experimentation in this domain. While this role does not involve people management, the candidate will be expected to provide mentorship and guidance to engineers and researchers on technical content.

The ideal candidate will have deep expertise in training and deploying transformer-based models for protein structure prediction and related tasks. Additionally, they should have a strong understanding of how these models are applied within drug discovery workflows. A proven track record in setting strategy, solving complex technical problems, and delivering impactful ML systems is essential.

Principal Machine Learning Engineer, Structural Biology | Pharma/BioTech expertise | Series A - Drug discovery B2B Platform | Fully Remote, EU || £ 850 - 1200pd, Outside IR35 | 6 - 12 months Contract Length

  • Define approaches for data preprocessing, selection, and benchmarking for new training tasks involving protein structures, complexes, and multimodal biological datasets.
  • Design and implement extensions to models tailored to specific challenges, such as predicting protein complex interactions and binding affinities, including data processing, benchmarking, and evaluation pipelines.
  • Provide mentorship and guidance to team members, assisting with the planning and execution of complex projects related to structural biology modeling.
  • Lead the technical strategy for machine learning applications in structural biology, focusing on adapting and expanding foundational models such as those for protein folding and related tasks.
  • Influence key decisions regarding model architecture, data infrastructure, and model deployment strategies.
  • Work collaboratively with other teams to ensure models address practical needs in scientific discovery.
  • Contribute to scientific publications or open-source projects where applicable.
  • Develop and maintain scalable, production-ready machine learning systems, including pipelines for training, inference, and deployment.

Expected Milestones

  • By month 3: Take charge of a structural biology modeling project. Create a strategy and experiment plan for adapting foundational models to a key high-value application.
  • By month 6: Deliver the initial functional model extension (e.g., binding affinity prediction head), complete with a clear benchmarking framework and a replicable pipeline.
  • By month 12: Oversee multiple ML initiatives in structural biology, showcasing significant improvements in model accuracy and practical impact. Provide mentorship to peers and set the strategic direction for the area.nd practical impact. Provide mentorship to peers and set the strategic direction for the area.

Principal Machine Learning Engineer, Structural Biology | Pharma/BioTech expertise | Series A - Drug discovery B2B Platform | Fully Remote, EU || Fully Remote, EU | £ 850 - 1200pd, Outside IR35 | 6 - 12 months Contract Length

  • You hold a PhD (or equivalent experience) in machine learning, computational biology, or structural biology, with a proven track record of applying machine learning to real-world protein structure or drug discovery challenges.
  • You have extensive experience in building and training transformer-based models (e.g., protein folding models) using frameworks like PyTorch, PyTorch Lightning, or similar.
  • You understand the data challenges in structural biology and are capable of designing scalable preprocessing, training, and evaluation workflows.
  • You have experience delivering machine learning systems at scale, including CI/CD pipelines, model versioning, and distributed GPU-based training.
  • You are proficient with modern MLOps tools and infrastructure, such as Docker, Kubernetes, cloud platforms, and orchestration tools.
  • You are adept at navigating complex technical environments and can deconstruct and execute ambitious modeling initiatives.
  • You understand how structural biology models contribute to the drug discovery process and can align your work with real-world applications.

If you think you are a good match for the Principal Machine Learning Engineer, ADMET | Pharma/BioTech expertise, ping us over your CV and we will give you a call if we think you are a good match!

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Mistakes Candidates Make When Applying for AI Jobs—And How to Avoid Them

Avoid the biggest pitfalls when applying for artificial intelligence jobs. Discover the top 10 mistakes AI candidates make—plus expert tips and internal resources to land your dream role. Introduction The market for AI jobs in the UK is booming. From computer-vision start-ups in Cambridge to global fintechs in London searching for machine-learning engineers, demand for artificial-intelligence talent shows no sign of slowing. But while vacancies grow, so does the competition. Recruiters tell us they reject up to 75 per cent of applications before shortlisting—often for mistakes that could have been fixed in minutes. To help you stand out, we’ve analysed thousands of recent applications posted on ArtificialIntelligenceJobs.co.uk, spoken with in-house talent teams and independent recruiters, and distilled their feedback into a definitive “top mistakes” list. Below you’ll find the ten most common errors, along with actionable fixes, keyword-rich guidance and handy internal links to deeper resources on our site. Bookmark this page before you hit “Apply”—it could be the difference between the “reject” pile and a career-defining interview.

Top 10 Best UK Universities for AI Degrees (2025 Guide)

Discover the ten best UK universities for Artificial Intelligence degrees in 2025. Compare entry requirements, course content, research strength and industry links to choose the right AI programme for you. Artificial Intelligence continues to transform industries—from healthcare to finance to transportation. The UK leads the way in AI research and education, with several universities consistently ranked among the world’s best for Computer Science. Below, we spotlight ten UK institutions offering strong AI-focused programmes at undergraduate or postgraduate level. While league tables shift year to year, these universities have a track record of excellence in teaching, research, and industry collaboration.

How to Write a Winning Cover Letter for AI Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for AI jobs with this proven 4-paragraph structure. Perfect for junior developers and career switchers. When applying for an AI job, your cover letter can make all the difference. For many, the process of writing a cover letter for an AI position can be daunting, especially when there are so few specific guides for tailoring it to the industry. However, a clear, effective structure combined with AI-specific language and examples can help you stand out from the competition. Whether you're a junior entering the field or a mid-career professional switching to AI, the following framework will make it easier for you to craft a compelling cover letter. In this article, we’ll take you through a proven four-paragraph structure that works and provide sample lines that you can adapt to your personal experience.