Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Principal Machine Learning Engineer

Datatonic, Ltd.
London
2 days ago
Create job alert
  • Translating Requirements: Interpret vague requirements and develop models to solve real-world problems.
  • Data Science: Conduct ML experiments using programming languages with machine learning libraries.
  • GenAI: Leverage generative AI to develop innovative solutions.
  • Optimisation: Optimise machine learning solutions for performance and scalability.
  • Custom Code: Implement tailored machine learning code to meet specific needs.
  • Data Engineering: Ensure efficient data flow between databases and backend systems.
  • MLOps: Automate ML workflows, focusing on testing, reproducibility, and feature/metadata storage.
  • ML Architecture Design: Create machine learning architectures using Google Cloud tools and services.
  • Engineering Software for Production: Build and deploy production-grade software for machine learning and data-driven solutions.
    To be successful, you will need strong ML & Data Science fundamentals and will know the right tools and approach for each ML use case. You'll be comfortable with model optimisation and deployment tools and practices. Furthermore, you'll also need excellent communication and consulting skills, with the desire to meet real business needs and deliver innovative solutions using AI & Cloud., Experience: 5+ years as a Machine Learning Engineer, preferably with a consulting background.
  • Programming Skills: Proficiency in Python as a backend language, capable of delivering production-ready code in well-tested CI/CD pipelines.
  • Cloud Expertise: Familiarity with cloud platforms such as Google Cloud, AWS, or Azure.
  • Software Engineering: Hands-on experience with foundational software engineering practices.
  • Database Proficiency: Strong knowledge of SQL for querying and managing data.
  • Scalability: Experience scaling computations using GPUs or distributed computing systems.
  • ML Integration: Familiarity with exposing machine learning components through web services or wrappers (e.g., Flask in Python).
  • Soft Skills: Strong communication and presentation skills to effectively convey technical concepts.
  • Scale-up experience.
  • Cloud certifications (Google CDL, AWS Solution Architect, etc.).
    At Datatonic, we are Google Cloud's premier partner in AI, driving transformation for world-class businesses. We push the boundaries of technology with expertise in machine learning, data engineering, and analytics on Google Cloud. By partnering with us, clients future-proof their operations, unlock actionable insights, and stay ahead of the curve in a rapidly evolving world.
  • As a Principal Machine Learning Engineer, you'll know how to engineer beautiful code in Python and take pride in what you produce. You'll be an advocate of high-quality engineering and best-practice in production software as well as rapid prototypes. Whilst the position is a hands-on technical role, we'd be particularly interested to find candidates with a desire to lead projects and take an active role in leading client discussions. Your responsibilities will involve building trusted relationships with prospects, finding creative ways to use machine learning to solve problems, scoping projects, and overseeing the delivery of these engagements., Join us to work alongside AI enthusiasts and data experts who are shaping tomorrow. At Datatonic, innovation isn't just encouraged - it's embedded in everything we do. If you're ready to inspire change and deliver value at the forefront of data and AI, we'd love to hear from you!


#J-18808-Ljbffr

Related Jobs

View all jobs

Principal Machine Learning Engineer

Principal Machine Learning Engineer

Principal Machine Learning Engineer

Machine Learning Engineer

Lead Machine Learning Engineer in City of London

Machine Learning Engineer - Autonomy

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.