National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Pricing Data Scientist

Harnham
London
2 weeks ago
Create job alert

A global marketing-data organisation is upgrading the engine that matches millions of survey invitations to the right respondents. Your task: treat the matching pipeline as a full-scale optimisation problem and raise both accuracy and yield.

Responsibilities

  • Model optimisation- refactor and improve existing matching/segmentation models; design objective functions that balance cost, speed and data quality.
  • Experimentation- set up offline metrics and online A/B tests; analyse uplift and iterate quickly.
  • Production delivery- build scalable pipelines in AWS SageMaker (moving to Azure ML); containerise code and hook into CI/CD.
  • Monitoring & tuning- track drift, response quality and spend; implement automated retraining triggers.
  • Collaboration- work with Data Engineering, Product and Ops teams to translate business constraints into mathematical formulations.

Tech stack

Python (pandas, NumPy, scikit-learn, PyTorch/TensorFlow)
SQL (Redshift, Snowflake or similar)
AWS SageMaker → Azure ML migration, with Docker, Git, Terraform, Airflow / ADF
Optional extras: Spark, Databricks, Kubernetes.

What you'll bring

  • 3-5+ years building optimisation or recommendation systems at scale.
  • Strong grasp of mathematical optimisation (e.g., linear/integer programming, meta-heuristics) as well as ML.
  • Hands-on cloud ML experience (AWS or Azure).
  • Proven track record turning prototypes into reliable production services.
  • Clear communication and documentation habits.

Desired Skills and Experience

Experience & skills checklist

3-5 + yrs optimisation/recommender work at production scale (dynamic pricing, yield, marketplace matching).

Mathematical optimisation know-how - LP/MIP, heuristics, constraint tuning, objective-function design.

Python toolbox: pandas, NumPy, scikit-learn, PyTorch/TensorFlow; clean, tested code.

Cloud ML: hands-on with AWS SageMaker plus exposure to Azure ML; Docker, Git, CI/CD, Terraform.

SQL mastery for heavy-duty data wrangling and feature engineering.

Experimentation chops - offline metrics, online A/B test design, uplift analysis.

Production mindset: containerise models, deploy via Airflow/ADF, monitor drift, automate retraining.

Soft skills: clear comms, concise docs, and a collaborative approach with DS, Eng & Product.

Bonus extras: Spark/Databricks, Kubernetes, big-data panel or ad-tech experience.

Related Jobs

View all jobs

Senior Pricing Data Scientist

Pricing & Revenue Data Scientist

R&D Senior Data Scientist

R&D Senior Data Scientist

R&D Senior Data Scientist

R&D Senior Data Scientist

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.

AI Jobs Salary Calculator 2025: Work Out Your Market Value in Seconds

Why your 2024 salary data is already outdated “Am I being paid what I’m worth?” It is the question that creeps in whenever you update your CV, see a former colleague announce a punchy pay rise on LinkedIn, or notice a recruiter slide into your inbox with a role that looks eerily similar to your current one—only advertised at £20k more. Artificial intelligence moves faster than any other hiring market. New frameworks are open‑sourced overnight, venture capital floods specific niches without warning, & entire job titles—Prompt Engineer, LLM Ops Specialist—appear in the time it takes most industries to schedule a meeting. In that environment, salary guides published only a year ago already look like historical curiosities. To give AI professionals an up‑to‑the‑minute benchmark, ArtificialIntelligenceJobs.co.uk has built a simple yet powerful salary‑calculation formula. By combining three variables—role, UK region, & seniority—you can estimate a realistic 2025 salary band in less than a minute. This article explains that formula, unpacks the latest trends driving pay, & offers concrete steps to boost your personal market value over the next 90 days.

How to Present AI Models to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

In today’s competitive job market, AI professionals are expected to do more than just build brilliant algorithms—they must also explain them clearly to stakeholders who may have no technical background. Whether you're applying for a role as a machine learning engineer, data scientist, or AI consultant, your ability to articulate complex models in simple terms is fast becoming one of the most valued soft skills in interviews and on the job. This guide will help you master the art of public speaking for AI roles, offering tips on structuring presentations, designing effective slides, and using storytelling to make your work resonate with any audience.