NLP / LLM Scientist – Applied AI ML Lead – Machine Learning Centre of Excellence

NLP PEOPLE
London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Scientist - GenAI - Consultant

Data Scientist - GenAI - Consultant

Data Science Lead

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

NLP / LLM Scientist – Applied AI ML Lead – Machine Learning Centre of Excellence

The Machine Learning Center of Excellence invites the successful candidate to apply sophisticated machine learning methods to a wide variety of complex tasks including natural language processing, speech analytics, time series, reinforcement learning and recommendation systems.

The candidate must excel in working in a highly collaborative environment together with the business, technologists and control partners to deploy solutions into production. The candidate must also have a strong passion for machine learning and invest independent time towards learning, researching and experimenting with new innovations in the field. The candidate must have solid expertise in Deep Learning with hands-on implementation experience and possess strong analytical thinking, a deep desire to learn and be highly motivated.

Job Responsibilities
• Research and explore new machine learning methods through independent study, attending industry-leading conferences, experimentation and participating in our knowledge sharing community
• Develop state-of-the art machine learning models to solve real-world problems and apply it to tasks such as NLP, speech recognition and analytics, time-series predictions or recommendation systems
• Collaborate with multiple partner teams such as Business, Technology, Product Management, Legal, Compliance, Strategy and Business Management to deploy solutions into production
• Drive Firm wide initiatives by developing large-scale frameworks to accelerate the application of machine learning models across different areas of the business

Required qualifications, capabilities, and skills
• Solid background in NLP or speech recognition and analytics, personalization/recommendation and hands-on experience and solid understanding of machine learning and deep learning methods
• PhD in a quantitative discipline, e.g. Computer Science, Electrical Engineering, Mathematics, Operations Research, Optimization, or Data Science with reasonable industry experience, or an MS with significant industry or research experience in the field
• Extensive experience with machine learning and deep learning toolkits (e.g.: TensorFlow, PyTorch, NumPy, Scikit-Learn, Pandas)
• Ability to design experiments and training frameworks, and to outline and evaluate intrinsic and extrinsic metrics for model performance aligned with business goals
• Experience with big data and scalable model training and solid written and spoken communication to effectively communicate technical concepts and results to both technical and business audiences.
• Scientific thinking with the ability to invent and to work both independently and in highly collaborative team environments
• Solid written and spoken communication to effectively communicate technical concepts and results to both technical and business audiences. Curious, hardworking and detail-oriented, and motivated by complex analytical problems

Preferred qualifications, capabilities, and skills
• Strong background in Mathematics and Statistics and familiarity with the financial services industries and continuous integration models and unit test development
• Knowledge in search/ranking, Reinforcement Learning or Meta Learning
• Experience with A/B experimentation and data/metric-driven product development, cloud-native deployment in a large scale distributed environment and ability to develop and debug production-quality code
• Published research in areas of Machine Learning, Deep Learning or Reinforcement Learning at a major conference or journal

About MLCOE
The Machine Learning Center of Excellence (MCLOE) team partners across the firm to create and share Machine Learning Solutions for our most challenging business problems. In this role you will work and collaborate with a team comprised of a multi-disciplinary community of experts focused exclusively on Machine Learning. On this team you will work with cutting-edge techniques in disciplines such as Deep Learning and Reinforcement Learning

For more information about the MLCOE, please visit http://www.jpmorgan.com/mlcoe. To learn about how we’re using AI/ML to drive transformational change, please read this blog: https://www.jpmorgan.com/insights/technology/technology-blog?source=cib_di_jp_aBtechblog102

The Chief Data & Analytics Office (CDAO) at JPMorgan Chase is responsible for accelerating the firm’s data and analytics journey. This includes ensuring the quality, integrity, and security of the company’s data, as well as leveraging this data to generate insights and drive decision-making. The CDAO is also responsible for developing and implementing solutions that support the firm’s commercial goals by harnessing artificial intelligence and machine learning technologies to develop new products, improve productivity, and enhance risk management effectively and responsibly.

Company:

Chase- Candidate Experience page

Qualifications:Language requirements:Specific requirements:Educational level:Level of experience (years):

Senior (5+ years of experience)

Tagged as: Big Data, Industry, Natural Language Processing, NLP, Speech Recognition, United Kingdom


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.