Data Scientist

Harnham
London
1 week ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - Measurement Specialist

Data Scientist (Mid-Level)

London (Bond Street) – 4 days a week in office (Mon–Thurs)

Up to £65,000 + 10% bonus


About the Company

We’re partnering with a high-performing international investment firm that works closely with ambitious, high-growth businesses to help them scale sustainably and create long-term value. Operating across Europe, the US, and Asia, this organisation combines deep investment expertise with modern technology to make smarter, faster decisions across sourcing, diligence, and portfolio management.


Over the past several years, they’ve built an in-house Data Science and AI function that applies advanced analytics, NLP, and large language models to real-world commercial and investment problems. This is a genuinely data-driven environment where technical work directly informs senior decision-making.


The Role

They’re now hiring a Mid-Level Data Scientist to join a growing London-based Data Science team. This role sits at the intersection of research, production ML, and high-impact short-form analysis, offering exposure to multiple projects rather than a single narrow product.


You’ll work hands-on with Python and cloud-based ML systems, contributing across the full data science lifecycle — from early experimentation and proof-of-concept work through to deployment and iteration in production. There’s a strong emphasis on solid engineering fundamentals alongside classical data science skills.


This is a great opportunity for a generalist data scientist who wants ownership, variety, and exposure to LLM use cases in a commercial environment.


Key Responsibilities

  • Research and prototype new data science and LLM-driven use cases to support commercial and strategic decision-making
  • Apply NLP and language analysis techniques to large, unstructured datasets
  • Build, test, and iterate on machine learning models using strong classical data science foundations
  • Support the productionisation and deployment of models in a cloud environment
  • Contribute to short, high-impact analytical projects supporting deal sourcing and due diligence
  • Work across multiple projects and products simultaneously, balancing research and delivery
  • Collaborate closely with other data scientists, engineers, and non-technical stakeholders
  • Take ownership of components of the data science stack, from experimentation through to live usage


Requirements:

You’re a technically strong, mid-level data scientist with a solid grounding in core data science principles and a growing interest in modern NLP and LLM-based systems. You enjoy working end-to-end, writing clean, production-ready code, and taking ownership of your work.


  • Around 3 years’ experience in a hands-on data science role
  • Strong Python skills and good software engineering fundamentals
  • Solid understanding of classical data science and machine learning techniques
  • Experience delivering data science projects end-to-end, from proof of concept to production
  • Familiarity with NLP and/or large language models
  • Cloud experience (GCP preferred; AWS or Azure also acceptable)
  • Comfortable working autonomously across multiple projects
  • Strong communication skills and a collaborative mindset
  • Experience with Transformers, Hugging Face, or modern NLP tooling
  • Exposure to agentic or LLM-based frameworks
  • Experience building simple front ends or dashboards (e.g. Streamlit)
  • Background in product-led or financial services environments


Please note: This role cannot offer VISA sponsorship.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.