Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

MLOps Engineer

Methods Business and Digital Technology
Worcester
7 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Lead Data Scientist - Remote

Lead Data Scientist - Remote

Data Scientist - Ad Campaign Performance

Methods Analytics is looking for a MLOps Engineer preferably has worked in the defence sector.

Location:

4-5days/w onsite at one of the follow locations: Worcester/Great Malvern/Gloucester/Poole or London

Salary:

£55,000 to £60,000 + bonus+ benefits

Who we are:

Methods Analytics exists to improve society by helping people make better decisions with data. Combining passionate people, sector-specific insight and technical excellence to provide our customers an end-to-end data service. We use a collaborative, creative and user centric approach data to do good and solve difficult problems. We ensure that our outputs are transparent, robust and transformative.

We value discussion and debate as part of our approach. We will question assumptions, ambition and process – but do so with respect and humility. We relish difficult problems, and overcome them with innovation, creativity and technical freedom to help us design optimum solutions. Ethics, privacy and quality are at the heart of our work and we will not sacrifice these for outcomes. We treat data with respect and use it only for the right purpose. Our people are positive, dedicated and relentless. Data is a vast topic, but we strive for interactions that are engaging, informative and fun in equal measure.

Methods Analytics was acquired by the Alten Group in early 2022.

Requirements

What You'll Be Doing as an MLOps Engineer:

  • Collaborate with Cross-Functional Teams: Work closely with data scientists, engineers, architects, and other stakeholders to align MLOps solutions with business objectives, explaining complex technical concepts in accessible language for non-technical audiences.
  • Automate Workflows and Ensure Reproducibility: Write scripts to automate ML workflows and ensure reproducibility of machine learning experiments, enabling consistent and efficient results.
  • Set Up ML Environments and Deployment Tools: Configure and maintain ML deployment environments using platforms and tools such as Kubernetes, Docker, and cloud platforms (e.g., AWS, Azure), ensuring scalability and reliability.
  • Develop CI/CD Pipelines: Build and maintain CI/CD pipelines to streamline model deployment and ensure automated, secure, and reliable model lifecycles from development to production.
  • Monitor and Maintain Deployed Models: Conduct regular performance reviews and data audits of deployed models, tracking model drift and identifying opportunities for optimisation to enhance performance and reliability.
  • Security and Vulnerability Management: Participate in threat modelling to identify and assess potential security risks throughout the ML lifecycle. Implement and maintain vulnerability management practices to proactively address security risks, ensuring the integrity and resilience of deployed models and infrastructure.
  • Troubleshoot and Resolve Issues: Proactively troubleshoot issues related to model performance, data pipelines, and infrastructure, identifying and resolving root causes to maintain stability
  • Champion Best Practices and Compliance: Ensure solutions follow best practices in security, scalability, and compliance, particularly aligning with Secure by Design and high-assurance software requirements.
  • Identify and Implement Reusable Solutions: Focus on reusability to maximise development efficiencies, reducing costs across programmes by identifying commonalities and building scalable solutions.
  • Collaborate on Data Architecture: Work with data architects to ensure the MLOps pipeline integrates seamlessly within the broader data architecture, aligning with governance and compliance standards.

 

Requirements:

You Will Demonstrate:

  • Technical Proficiency in Python and ML Frameworks: Experience with Python and ML frameworks like TensorFlow, PyTorch, or Scikit-Learn, enabling efficient deployment and management of ML models.
  • Containerisation and Orchestration: Hands-on experience with containerisation and orchestration tools, such as Docker and Kubernetes, to ensure reliable, scalable model deployments.
  • CI/CD Expertise: Proven experience developing and managing CI/CD pipelines using tools like Jenkins, Git, and Terraform, streamlining deployment and automating testing.
  • Knowledge of Cloud and ML Infrastructure: Experience with cloud platforms (AWS, Azure, or GCP), infrastructure-as-code (IaC) practices, and managing cloud-based ML workflows and resources at scale.
  • Experience with Threat Modelling and Vulnerability Management: Proven ability to conduct threat modelling exercises to identify security risks and implement vulnerability management practices to ensure robust and secure machine learning systems.
  • Experience in Security and Compliance: Demonstrated experience working within secure, high-assurance environments, ideally including defence or similarly regulated settings.
  • Cross-Functional Collaboration Skills: Ability to collaborate across teams to translate business requirements into technical specifications, maintaining clear and effective communication.
  • Strong Troubleshooting Abilities: Proficient in diagnosing and resolving model and infrastructure-related issues, identifying root causes, and implementing corrective actions.

 You may also have some of the desirable skills and experience:

  • Experience with MLOps Tools and Version Control: Familiarity with tools such as MLflow, DVC, Seldon Core, Metaflow, and Airflow or Prefect, and version control practices for models and datasets to ensure reproducibility, traceability, and compliance across ML workflows.
  • Scalability and Optimisation in Production Environments: Experience managing high-performance, low-latency data systems and optimising ML model infrastructure to handle large-scale data in production.
  • Understanding of Agile Development Methodologies: Familiarity with iterative and agile development methodologies such as SCRUM, contributing to a flexible and responsive development environment.
  • Familiarity with Recent Innovations: Knowledge of recent innovations such as GenAI, RAG, and Microsoft Copilot, as well as certifications with leading cloud providers and in areas of data science, AI, and ML.

 

This role will require you to have or be willing to go through Security Clearance. As part of the onboarding process candidates will be asked to complete a Baseline Personnel Security Standard; details of the evidence required to apply may be found on the government website Gov.UK. If you are unable to meet this and any associated criteria, then your employment may be delayed, or rejected. Details of this will be discussed with you at interview

Benefits

Methods Analytics is passionate about its people; we want our colleagues to develop the things they are good at and enjoy.

By joining us you can expect

  • Autonomy to develop and grow your skills and experience
  • Be part of exciting project work that is making a difference in society
  • Strong, inspiring and thought-provoking leadership
  • A supportive and collaborative environment

As well as this, we offer:

  • Development access to LinkedIn Learning, a management development programme and training
  • Wellness 24/7 Confidential employee assistance programme
  • Social – Breakfast Tuesdays, Thirsty Thursdays and Pizza on the last Thursday of each month as well as commitment to charitable causes
  • Time off 25 days a year
  • Pension Salary Exchange Scheme with 4% employer contribution and 5% employee contribution
  • Discretionary Company Bonus based on company and individual performance
  • Life Assurance of 4 times base salary
  • Private Medical Insurance which is non-contributory (spouse and dependants included)
  • Worldwide Travel Insurance which is non-contributory (spouse and dependants included)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.

The Best Free Tools & Platforms to Practise AI Skills in 2025/26

Artificial Intelligence (AI) is one of the fastest-growing career fields in the UK and worldwide. Whether you are a student exploring AI for the first time, a graduate looking to build your portfolio, or an experienced professional upskilling for career growth, having access to free tools and platforms to practise AI skills can make a huge difference. In this comprehensive guide, we’ll explore the best free resources available in 2025, covering AI coding platforms, datasets, cloud tools, no-code AI platforms, online communities, and learning hubs. These tools allow you to practise everything from machine learning models and natural language processing (NLP) to computer vision, reinforcement learning, and large language model (LLM) fine-tuning—without needing a huge budget. By the end of this article, you’ll have a clear roadmap of where to start practising your AI skills for free, how to build real-world projects, and which platforms can help you land your next AI job.

Top 10 Skills in Artificial Intelligence According to LinkedIn & Indeed Job Postings

Artificial intelligence is no longer a niche field reserved for research labs or tech giants—it has become a cornerstone of business strategy across the UK. From finance and healthcare to manufacturing and retail, employers are rapidly expanding their AI teams and competing for talent. But here’s the challenge: AI is evolving so quickly that the skills in demand today may look different from those of just a few years ago. Whether you’re a graduate looking to enter the industry, a mid-career professional pivoting into AI, or an experienced engineer wanting to stay ahead, it’s essential to know what employers are actually asking for in their job ads. That’s where platforms like LinkedIn and Indeed provide valuable insight. By analysing thousands of job postings across the UK, they reveal the most frequently requested skills and emerging trends. This article distils those findings into the Top 10 AI skills employers are prioritising in 2025—and shows you how to present them effectively on your CV, in interviews, and in your portfolio.