Manufacturing Data Scientist

Randstad Inhouse Services
Halewood
13 hours ago
Create job alert

Manufacturing Data Scientist

Salary: £46,587.88 (inclusive of 35% holiday bonus for 33 days per year; 25 vacation & 8 bank holidays)

Contract: Permanent

Hours: Monday to Thursday: 07:00 - 15:30, Friday: 07:00 - 12:30

As a Manufacturing Data Scientist, you will play a key role in shaping how data is used to improve efficiency, quality, throughput, and sustainability across the plant.

You will design, develop, and maintain a portfolio of data-driven products and projects that turn complex manufacturing data into clear, actionable insights for operators, engineers, and leadership. You will work as part of the plant manufacturing team while also being embedded within Ford's wider global data science and analytics community, helping to scale successful solutions across the enterprise.

This role embodies Ford's commitment to continuous improvement and data-led decision-making, enabling teams to adapt and improve based on the insights you deliver.

Essential

Degree-level education in a relevant subject (such as Mathematics, Statistics, Data Analytics, Computer Science, Physical Sciences) or equivalent professional experience within an engineering or automotive environment
Strong Python expertise
Experience applying machine learning techniques in real-world scenarios
Solid grounding in statistical methodologies and analysis

Desirable

SQL proficiency
Experience with cloud computing platforms

What You'll Do

Leadership & Ford+ Behaviours

Demonstrate Ford+ behaviours in your daily work: ownership, collaboration, integrity, inclusion, customer focus, and continuous learning
Lead or co-lead cross-site analytics initiatives and contribute to a shared analytics playbook

Data, Analytics & Insight

Extract, transform, analyse, and report manufacturing data from multiple sources
Put robust data quality, governance, and security controls in place
Identify process bottlenecks and key drivers of variability to improve OEE, yield, scrap, downtime, cycle times, and energy usage
Build clear dashboards and visualisations, communicating insights in accessible, non-technical language

Modelling & Deployment

Develop and deploy predictive and prescriptive models (e.g. predictive maintenance, defect forecasting, anomaly detection, capacity planning)
Operationalise models using cloud and MLOps best practices, including monitoring, documentation, retraining, and explainability

Collaboration & Change

Work closely with engineering, quality, maintenance, IT, production, and supply chain teams to translate insights into action
Support pilot projects and help scale successful solutions across sites
Contribute to analytics training and capability-building within the plant

Ethics, Safety & Governance

Ensure data privacy, security, and compliance considerations are embedded in all analytics work
Champion responsible, safe, and ethical use of data and models

Benefits

Access to our Employee Development and Assistance Programme
A unique opportunity to access Fords Privilege scheme - allowing you to purchase Ford vehicles at a discount
A great salary increasing yearly, along with our competitive pension scheme
An excellent work-life balance, including a generous holiday allowance of 25 days (inclusive of set shutdown dates)
Cycle to Work Scheme
On site facilities such as a gym, sauna and steam room

Related Jobs

View all jobs

Manufacturing Data Scientist

Manufacturing Data Scientist

Manufacturing Data Scientist

Manufacturing Data Scientist

Manufacturing Data Scientist — AI/ML for Ops (Flexible)

Factory Data Scientist - Plant Analytics & Efficiency

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.