Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Performance Engineer- World-Leading Prop Trading Fund

Oxford Knight
London
3 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Performance Engineer

Machine Learning Performance Engineer, London

Machine Learning Performance Engineer, London

Engineering Manager, Machine Learning Platform

Applied Scientist I (Machine Learning), ITA - Automated Performance Evaluation

Applied Scientist I (Machine Learning), ITA - Automated Performance Evaluation

Machine Learning Performance EngineerSummary:

Exciting opportunity to work at a tech-centric prop trading fund which trades a wide range of financial products, with offices across the globe. Looking for an experienced engineer with low-level systems programming and optimization expertise to join their growing ML team.

Machine learning is front and centre at this firm, and your focus will be to optimize the performance of their models: both training and inference. They're interested in efficient large-scale training, low-latency inference in real-time systems, and high-throughput inference in research. Partly this will involve improving straightforward CUDA, but they also need a whole-systems approach, including storage systems, networking, and host- and GPU-level considerations.

The successful candidate will be a smart, curious software engineer who enjoys finding solutions forplex problems. If you also have a great appetite for learning new things, this role is for you!

Requirements:

An understanding of modern ML techniques and toolsets, with a strong focus on performance The systems knowledge & experience required to debug a training run's performance end to end Low-level GPU andpute cluster knowledge, CUDA or other types of GPU programming, PTX, SASS, warps, cooperative groups, Tensor Cores, & the memory hierarchy Debugging/optimization tooling experience, CUDA GDB, NSight Systems, NSightpute, etc. Library knowledge of Triton, CUTLASS, CUB, Thrust, cuDNN, and cuBLAS


Benefits:
Market-leading salaries Generous benefits package, including physical & mental health benefits, excellent holiday entitlement, significant parental leave, retirement benefits, private on-site gym Focus on learning & development with tuition reimbursement Recreation spaces with breakfast, lunch, snacks and treats

Whilst we carefully review all applications, to all jobs, due to the high volume of applications we receive it is not possible to respond to those who have not been successful.

Contact
If you feel you are a good match, please don't hesitate to get in touch:

Dan Hampton


linkedin/in/dan-hampton-ab029392

Job ID BUggAkznL0RR

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.