National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Performance Engineer

Jane Street
London
3 weeks ago
Applications closed

Related Jobs

View all jobs

Machine Learning Research Engineer

Machine Learning Engineer

Machine Learning Ops Engineer - AI

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

We are looking for an engineer with experience in low-level systems programming and optimisation to join our growing ML team.

Machine learning is a critical pillar of Jane Street's global business. Our ever-evolving trading environment serves as a unique, rapid-feedback platform for ML experimentation, allowing us to incorporate new ideas with relatively little friction.

Your part here is optimising the performance of our models – both training and inference. We care about efficient large-scale training, low-latency inference in real-time systems and high-throughput inference in research. Part of this is improving straightforward CUDA, but the interesting part needs a whole-systems approach, including storage systems, networking and host- and GPU-level considerations. Zooming in, we also want to ensure our platform makes sense even at the lowest level – is all that throughput actually goodput? Does loading that vector from the L2 cache really take that long?

If you’ve never thought about a career in finance, you’re in good company. Many of us were in the same position before working here. If you have a curious mind and a passion for solving interesting problems, we have a feeling you’ll fit right in.

There’s no fixed set of skills, but here are some of the things we’re looking for:

  • An understanding of modern ML techniques and toolsets
  • The experience and systems knowledge required to debug a training run’s performance end to end
  • Low-level GPU knowledge of PTX, SASS, warps, cooperative groups, Tensor Cores and the memory hierarchy
  • Debugging and optimisation experience using tools like CUDA GDB, NSight Systems, NSight Computesight-systems and nsight-compute
  • Library knowledge of Triton, CUTLASS, CUB, Thrust, cuDNN and cuBLAS
  • Intuition about the latency and throughput characteristics of CUDA graph launch, tensor core arithmetic, warp-level synchronization and asynchronous memory loads
  • Background in Infiniband, RoCE, GPUDirect, PXN, rail optimisation and NVLink, and how to use these networking technologies to link up GPU clusters
  • An understanding of the collective algorithms supporting distributed GPU training in NCCL or MPI
  • An inventive approach and the willingness to ask hard questions about whether we're taking the right approaches and using the right tools

Accepted file types: pdf, doc, docx, txt, rtf

Enter manually

Accepted file types: pdf, doc, docx, txt, rtf

Additional information (for source)

Have you interviewed with Jane Street before? * Select...

Pronouns

Are you currently a student? * Select...

Enter your college/university

Major/Field of study

Extra

Why you’re interested in Jane Street
How you heard about us
If you have a job now, why you’re looking for a new one

Year you expect to begin full time employment


#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

When it comes to job hunting in artificial intelligence (AI), most candidates head straight to traditional job boards, LinkedIn, or recruitment agencies. But what if there was a better way to find roles that aren’t advertised publicly? What if you could access hidden job leads, gain inside knowledge, or get referred by people already in the field? That’s where professional bodies and specialist AI communities come in. In this article, we’ll explore how UK-based organisations like BCS (The Chartered Institute for IT), IET (The Institution of Engineering and Technology), and the Turing Society can help you uncover AI job opportunities you won’t find elsewhere. We'll show you how to strategically use their directories, special-interest groups (SIGs), and CPD (Continuing Professional Development) events to elevate your career and expand your AI job search in ways most job seekers overlook.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.

AI Jobs Salary Calculator 2025: Work Out Your Market Value in Seconds

Why your 2024 salary data is already outdated “Am I being paid what I’m worth?” It is the question that creeps in whenever you update your CV, see a former colleague announce a punchy pay rise on LinkedIn, or notice a recruiter slide into your inbox with a role that looks eerily similar to your current one—only advertised at £20k more. Artificial intelligence moves faster than any other hiring market. New frameworks are open‑sourced overnight, venture capital floods specific niches without warning, & entire job titles—Prompt Engineer, LLM Ops Specialist—appear in the time it takes most industries to schedule a meeting. In that environment, salary guides published only a year ago already look like historical curiosities. To give AI professionals an up‑to‑the‑minute benchmark, ArtificialIntelligenceJobs.co.uk has built a simple yet powerful salary‑calculation formula. By combining three variables—role, UK region, & seniority—you can estimate a realistic 2025 salary band in less than a minute. This article explains that formula, unpacks the latest trends driving pay, & offers concrete steps to boost your personal market value over the next 90 days.