Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Operations Engineer

Tbwa Chiat/Day Inc
Cambridge
7 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Operations Engineer

Machine Learning Operations Engineer

Machine Learning Operations Engineer

Machine Learning Operations Engineer

Machine Learning Operations Engineer

Machine Learning Operations Engineer

Lila Sciences is a privately held, early-stage technology company pioneering the application of artificial intelligence to transform every aspect of the scientific method. Lila is backed by Flagship Pioneering, which brings the courage, long-term vision, and resources needed to realize unreasonable results. Join our mission-driven team and contribute to the future of science.

Our Life Sciences effort is leveraging AI and high-throughput automation for valuable therapeutic discovery and development across biological modalities. And our Physical Sciences effort is developing a novel AI and data-driven approach to materials discovery and development to accelerate the transition to a sustainable economy.

At Lila, we are uniquely cross-functional and collaborative. We are actively reimagining the way teams work together and communicate. Therefore, we seek individuals with an inclusive mindset and a diversity of thought. Our teams thrive in unstructured and creative environments. All voices are heard because we know that experience comes in many forms, skills are transferable, and passion goes a long way.

If this sounds like an environment you’d love to work in, even if you only have some of the experience listed below, please apply.

The Role

We are seeking a mid-levelMachine Learning Operations Engineerto join our growing team. In this role, you will focus on unifying data management at Lila by building and maintaining high performance and robust data pipelines to support a variety of machine learning use-cases. You will work closely with both LLM researchers and Applied AI Engineers to ensure the seamless integration of cutting-edge LLM research with scalable, production-ready systems for life science and physical science automation.

Responsibilities:

  • Design and implement high-performance data processing infrastructure for large language model training
  • Collaborate with researchers to implement novel data processing pipelines
  • Develop an easy-to-use, secure, and robust developer experience for researchers and engineers
  • Contribute to the MLOps best practices at Lila Sciences and write technical documentation for staff

Qualifications:

  • 3+ years of experience in software engineering, with a focus in data engineering or DevOps
  • Demonstrated experience deploying and maintaining machine learning models in production
  • Proficiency with Kubernetes, Docker, and Cloud (AWS Preferred)
  • Proficiency with CI/CD tools and Frameworks (GitHub Actions preferred)
  • Strong skills with Scripting languages (e.g. Python, Bash), VCS (git), and Linux
  • Proven experience in cross-functional teams and able to communicate effectively about technical and operational challenges.

Preferred Qualifications:

  • Proficiency with scalable data frameworks (Spark, Kafka, Flink)
  • Proven Expertise with Infrastructure as Code and Cloud best practices
  • Proficiency with monitoring and logging tools (e.g., Prometheus, Grafana)

Working at Lila Sciences, you would have access to advanced technology in the areas of:

  • AI experimental design and simulation
  • Automated liquid handling and instrumentation

Location:Cambridge, MA preferred; open to remote.

More About Flagship Pioneering

Flagship Pioneering is a biotechnology company that invents and builds platform companies, each with the potential for multiple products that transform human health or sustainability. Since its launch in 2000, Flagship has originated and fostered more than 100 scientific ventures, resulting in more than $90 billion in aggregate value. Many of the companies Flagship has founded have addressed humanity’s most urgent challenges: vaccinating billions of people against COVID-19, curing intractable diseases, improving human health, preempting illness, and feeding the world by improving the resiliency and sustainability of agriculture. Flagship has been recognized twice on FORTUNE’s “Change the World” list, an annual ranking of companies that have made a positive social and environmental impact through activities that are part of their core business strategies, and has been twice named to Fast Company’s annual list of the World’s Most Innovative Companies. Learn more about Flagship at www.flagshippioneering.com.

Flagship Pioneering and our ecosystem companies arecommitted to equal employment opportunityregardless of race, color, ancestry, religion, sex, national origin, sexual orientation, age, citizenship, marital status, disability, gender identity or Veteran status.

At Flagship, we recognize there is no perfect candidate. If you have some of the experience listed above but not all, please apply anyway. Experience comes in many forms, skills are transferable, and passion goes a long way. We are dedicated to building diverse and inclusive teams and look forward to learning more about your unique background.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.