Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer II, Messaging Optimization

Spotify
London
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer II, Marketing Testing

Staff Machine Learning Engineer

Staff Machine Learning Engineer

Staff Machine Learning Engineer

Applied Scientist II - Computer Vision

Data Scientist

We're looking for a Machine Learning Engineer II to join our team focusing on messaging optimization. Through our messaging platform, we communicate with users to connect them with valuable audio content and to help the business grow.The team's vision is to build the machine learning models and infrastructure that offers a fully personalized and ML-optimized experience for listeners throughout their user journey that powers every messaging and conversion campaign at Spotify.Our team is a combination of Machine Learning Engineers, Data Engineers, Backend Engineers and Data Scientists.

What You'll Do

Contribute to designing, building, evaluating, shipping, and refining Spotify’s product by hands-on ML development. Collaborate with a multi-functional agile team spanning user research, design, data science, product management, and engineering to build new product features that advance our mission to connect artists and fans in personalized and relevant ways. Prototype new approaches and productionize solutions at scale for our hundreds of millions of active users. Help drive optimisation, testing, and tooling to improve quality. Be part of an active group of machine learning practitioners in your mission and across Spotify.

Who You Are

You have a strong background in machine learning, theory, and practice. You are comfortable explaining the intuition and assumptions behind ML concepts, experience in the messaging space is a plus. You have hands-on experience implementing and maintaining production ML systems in Python, Scala and using libraries like Tensorflow or PyTorch. You are experienced with building data pipelines, and you are self-sufficient in getting the data you need to build and evaluate your models. You preferably have experience with cloud platforms like GCP or AWS.

Where You'll Be

For this role you will be based in London.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.