Senior Machine Learning Engineer, Perception

Rivian
London
7 months ago
Applications closed

Related Jobs

View all jobs

Senior 3D Computer Vision Engineer

Senior 3D Computer Vision Engineer

Founding Engineer - Chief of AI and Computer Vision

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

About Rivian Rivian is on a mission to keep the world adventurous forever. This goes for the emissions-free Electric Adventure Vehicles we build, and the curious, courageous souls we seek to attract. As a company, we constantly challenge what’s possible, never simply accepting what has always been done. We reframe old problems, seek new solutions and operate comfortably in areas that are unknown. Our backgrounds are diverse, but our team shares a love of the outdoors and a desire to protect it for future generations. Role Summary You will be a key member of the Perception team at Rivian, which develops advanced machine learning algorithms that directly impact safety critical self-driving features of our category defining vehicles. Responsibilities As a member of the Autonomy team, you will guide the architecture, implementation, and deployment of foundation models that act as learned world models. These models will support not only perception tasks (e.g., object detection, scene understanding) but also downstream decision-making and closed-loop autonomy. .Key areas of responsibility include: Developing technical strategy and architecture for foundation models as unified world models Developing multi-modal, multi-task transformer-based systems that support closed-loop autonomy Building training and evaluation pipelines at scale across petabytes of real-world and simulated driving data Collaborating with cross-functional teams across perception, planning, simulation, and ML infrastructure Driving alignment between model capabilities and real-world deployment constraints (latency, robustness, validation) Publishing internal technical guidance and mentoring engineers across autonomy ML Qualifications B.S., M.S., or Ph.D. in Computer Science, Robotics, or a related field 7+ years of experience building and deploying large-scale ML systems Deep understanding of foundation models, self-supervised learning, and world models in robotics or simulation Strong software engineering background, with fluency in Python and C++ Experience training and evaluating transformer models or end-to-end autonomous agents Familiarity with real-time inference systems and autonomous vehicle constraints Proven leadership in driving ML projects from research to production Bonus: Prior work on end-to-end autonomous driving architectures (e.g., imitation learning, behavior cloning, world models) Experience with sensor fusion (LiDAR, camera, radar) in a learned model Equal Opportunity Rivian is an equal opportunity employer and complies with all applicable federal, state, and local fair employment practices laws. All qualified applicants will receive consideration for employment without regard to race, color, religion, national origin, ancestry, sex, sexual orientation, gender, gender expression, gender identity, genetic information or characteristics, physical or mental disability, marital/domestic partner status, age, military/veteran status, medical condition, or any other characteristic protected by law. Rivian is committed to ensuring that our hiring process is accessible for persons with disabilities. If you have a disability or limitation, such as those covered by the Americans with Disabilities Act, that requires accommodations to assist you in the search and application process, please email us at . Candidate Data Privacy Rivian may collect, use and disclose your personal information or personal data (within the meaning of the applicable data protection laws) when you apply for employment and/or participate in our recruitment processes (“Candidate Personal Data”). This data includes contact, demographic, communications, educational, professional, employment, social media/website, network/device, recruiting system usage/interaction, security and preference information. Rivian may use your Candidate Personal Data for the purposes of (i) tracking interactions with our recruiting system; (ii) carrying out, analyzing and improving our application and recruitment process, including assessing you and your application and conducting employment, background and reference checks; (iii) establishing an employment relationship or entering into an employment contract with you; (iv) complying with our legal, regulatory and corporate governance obligations; (v) recordkeeping; (vi) ensuring network and information security and preventing fraud; and (vii) as otherwise required or permitted by applicable law. Rivian may share your Candidate Personal Data with (i) internal personnel who have a need to know such information in order to perform their duties, including individuals on our People Team, Finance, Legal, and the team(s) with the position(s) for which you are applying; (ii) Rivian affiliates; and (iii) Rivian’s service providers, including providers of background checks, staffing services, and cloud services. Rivian may transfer or store internationally your Candidate Personal Data, including to or in the United States, Canada, the United Kingdom, and the European Union and in the cloud, and this data may be subject to the laws and accessible to the courts, law enforcement and national security authorities of such jurisdictions. Please note that we are currently not accepting applications from third party application services.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.