Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer II, Content Understanding

Spotify
London
1 year ago
Applications closed

Related Jobs

View all jobs

Staff Machine Learning Engineer

Staff Machine Learning Engineer

Machine Learning Engineer II, Marketing Testing

Staff Machine Learning Engineer

Applied Scientist II - Computer Vision

Data Scientist

As Spotify grows its video catalog, understanding and classifying visual content in our catalog becomes very important to support moderation, search and recommendation use cases. We are a small, cross-functional team of Machine Learning Engineers and Data Engineers leveraging state of the art machine learning solely focused on building and deploying visual understanding models. Delivering the best Spotify experience possible. To as many people as possible. In as many moments as possible. That’s what the Experience team is all about. We use our deep understanding of consumer expectations to enrich the lives of millions of our users all over the world, bringing the music and audio they love to the devices, apps and platforms they use every day. Know what our users want? Join us and help Spotify give it to them. As a Machine Learning Engineer in our Content Understanding teams, you will help define and build ML deployed at scale in support of a broad range of use cases driving value in media and catalog understanding.

What You'll Do

Build production systems that enrich and improve our listeners’ experience on the platform Contribute to designing, building, evaluating, shipping, and refining Spotify’s product by hands-on ML development Prototype new approaches and production-ize solutions at scale for our hundreds of millions of active users Help drive optimization, testing, and tooling to improve quality Perform data analysis to establish baselines and inform product decisions Collaborate with a cross functional agile team spanning design, data science, product management, and engineering to build new technologies and features

Who You Are

You have professional experience in applied machine learning Extensive experience working in a product and data-driven environment (Python, Scala, Java, SQL, or C++, with Python experience required) and cloud platforms (GCP or AWS) You have some hands-on experience implementing or prototyping machine learning systems at scale  You have experience architecting data pipelines and are self-sufficient in getting the data you need to build and evaluate models, using tools like Dataflow, Apache Beam, or Spark You care about agile software processes, data-driven development, reliability, and disciplined experimentation You have experience and passion for fostering collaborative teamsExperience with TensorFlow, pyTorch, and/or Google Cloud Platform is a plus Experience with building data pipelines and getting the data you need to build and evaluate your models, using tools like Apache Beam / Spark is a plus

Where You'll Be

You will work out of our London office

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.

Why the UK Could Be the World’s Next AI Jobs Hub

Artificial Intelligence (AI) has rapidly moved from research labs into boardrooms, classrooms, hospitals, and homes. It is already reshaping economies and transforming industries at a scale comparable to the industrial revolution or the rise of the internet. Around the world, countries are competing fiercely to lead in AI innovation and reap its economic, social, and strategic benefits. The United Kingdom is uniquely positioned in this race. With a rich heritage in computing, world-class universities, forward-thinking government policy, and a growing ecosystem of startups and enterprises, the UK has many of the elements needed to become the world’s next AI hub. Yet competition is intense, particularly from the United States and China. Success will depend on how effectively the UK can scale its strengths, close its gaps, and seize opportunities in the years ahead. This article explores why the UK could be the world’s next global hub for artificial intelligence, what challenges it must overcome, and what this means for businesses, researchers, and job seekers.