Machine Learning Engineer, App Ads

reddit
remote, united kingdom
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer, Gen AI

Machine Learning Engineer

Machine Learning Engineer (Manager)

Senior Machine Learning Engineer, Gen AI

Lead Machine Learning Engineer, Gen AI

Machine Learning Manager

Reddit is a community of communities. It’s built on shared interests, passion, and trust and is home to the most open and authentic conversations on the internet. Every day, Reddit users submit, vote, and comment on the topics they care most about. With ,+ active communities and approximately M+ daily active unique visitors, Reddit is one of the internet’s largest sources of information. For more information, visit .

We’re evolving and continuing our mission to bring community, belonging, and empowerment to everyone in the world. Providing a delightful and relevant experience to our users applies to our Ads like all of our offerings, and we’re excited to build a product that is best-in-class for our users and advertisers. The year ahead is a busy one - join us! 

The App Ads Team is entrusted with the development and maintenance of a diverse set of Machine Learning models that are responsible for predictions regarding user conversions after engaging with Reddit. The creation and enhancement of these models plays a crucial role in our organization's efforts to optimize advertising effectiveness and drive business growth. We are looking for a motivated engineer that will help us advance our vision. As a diverse group of software engineers, product managers, data scientists, and ads experts, we are excited for you to join our team!

Your Responsibilities :

Develop advanced and scalable deep learning models using cutting-edge techniques for critical machine learning tasks within the app conversions modeling domain. Design and implement innovative strategies for signal loss mitigation, ensuring the accuracy and reliability of predictions in the presence of incomplete or noisy data. Research, implement, test, and launch new model architectures including deep neural networks with advanced pooling and feature interaction architectures. Systematic feature engineering works to convert all kinds of raw data in Reddit (dense & sparse, behavior & content, etc) into features with various FE technologies such as aggregation, embedding, sub models, etc. Be a mentor and cross-functional advocate for the team. Contribute meaningfully to team strategy. We give everyone a seat at the table and encourage active participation in planning for the future!

Who You Might Be:

+ years of experience with industry-level deep learning models. + years of experience with mainstream ML frameworks (such as Tensorflow and Pytorch). + years of end-to-end experience of training, evaluating, testing, and deploying industry-level models. + years of experience of orchestrating complicated data generation pipelines on large-scale datasets. Experience with ads domain and conversion modeling is a plus. Experience with recommendation systems is a plus.

Benefits:

Pension Scheme Private Medical and Dental Scheme Life Assurance, Income Protection Workspace benefit for your home office  Personal & Professional development funds Family Planning Support  Commuter Benefits Flexible Vacation & Reddit Global Days Off

This role is remote within the Netherlands or the UK

Li-remote

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.