Machine Learning & Data Scientist

Reading
4 days ago
Create job alert

Job Title: Machine Learning & Data Scientist

Location: Reading, UK (Hybrid)

Salary: Up to £80,000 per annum

About Us: We are dedicated to enhancing the global growth and resilience of renewable energy transmission by delivering intelligent, autonomous robotic monitoring solutions for high-voltage assets. Our mission focuses on supporting power transmission operators worldwide with advanced technologies.

Role Overview: We are seeking a Machine Learning & Data Scientist to join our dynamic team. The ideal candidate will have experience in developing multimodal models and a background in condition monitoring, particularly concerning high-voltage assets. This role offers the opportunity to contribute significantly to the development of AI-powered analytics for autonomous robotic systems.

Key Responsibilities:

Develop and implement machine learning algorithms, focusing on multimodal data integration.
Design and deploy predictive models for condition monitoring of high-voltage assets.
Collaborate with cross-functional teams to integrate AI solutions into autonomous robotic systems.
Analyze large datasets to extract meaningful insights and inform decision-making.
Stay abreast of the latest developments in machine learning and apply them to ongoing projects.Qualifications:

Bachelor's or Master's degree in Computer Science, Data Science, Electrical Engineering, or a related field.
Proven experience in developing and deploying multimodal machine learning models.
Familiarity with condition monitoring techniques, especially in the context of high-voltage assets.
Proficiency in programming languages such as Python or C++.
Experience with data visualization tools and techniques.
Strong problem-solving skills and the ability to work collaboratively in a team environment.Desirable Skills:

Experience with autonomous robotic systems.
Knowledge of the energy transmission sector.
Familiarity with ISO 27001 standards.

Benefits:

Share option plan

All full-time employees become eligible for participation in the share option plan after 6 months of employment. The share option plan gives employees a real opportunity to share in the success of the business in the longer term, over and above the sense of only working for a monthly wage.

Flexible hybrid working

We allow employees to work in the lab or remote with line-manager approval, as best suits the nature of their role and the work they are performing at any time (i.e. physical aspects of mechanical engineering, such as prototype production, tend to be heavily biased towards in-lab, whereas CAD design work, software architecture design, and sales activities are less so).

Paid vacation time

We offer twenty-five days paid holiday, and 'unlimited' additional unpaid leave. This allows our employees to manage a healthy work life balance, contributing to happy, productive, and engaged employees. Managers retain the right of approval for all holidays (paid and unpaid), allowing us to ensure work capacity in times of peak demand or tight deadlines. Our culture and hiring standards help us identify people that are unlikely to abuse the holiday policy, and, in the rare cases where that might occur we have the opportunity to use performance management to correct any potential abuse or part company with the abusive employee.

Contributory Pension

We provide a workplace pension scheme to help our employees save for their retirement. Employees can elect to make a salary sacrifice to benefit from pension tax incentives, and the business complements the employee contribution with a contribution from the company.

Cycle to work scheme

A cycle to work scheme is a great incentive for employees, allowing them to purchase a bike for work-related commuting as well as non-work leisure activities. The monetary savings for the employee can be significant, and the health benefits can increase employee physical and psychological health which improves work and retention. Furthermore, it contributes to lowering our carbon footprint and even creates employer's national insurance cost savings.

How to apply?

Please send a CV to (url removed)

People Source Consulting Ltd is acting as an Employment Agency in relation to this vacancy. People Source specialise in technology recruitment across niche markets including Information Technology, Digital TV, Digital Marketing, Project and Programme Management, SAP, Digital and Consumer Electronics, Air Traffic Management, Management Consultancy, Business Intelligence, Manufacturing, Telecoms, Public Sector, Healthcare, Finance and Oil & Gas

Related Jobs

View all jobs

ML Data Engineer

Machine Learning / Computer Vision Engineer – Data Scientist

Senior Data Scientist

Machine Learning Manager

Data Scientist

Machine Learning Engineer (NLP)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.