National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Lead Data Scientist

Xcede
Guildford
2 days ago
Create job alert

Lead Data Scientist

Surrey office, x1 day every two weeks.


A well-established, product-led business is looking for a Lead Data Scientist to spearhead innovation and drive measurable value through advanced machine learning, experimentation, and the development of production-grade models.

Sitting within a cross-functional data team, this is a hands-on leadership role with the autonomy to shape the modelling roadmap, contribute to R&D strategy, and influence pricing and risk decisions across multiple business lines. You’ll manage a small team of data scientists, guiding them through delivery while remaining actively involved in technical implementation and experimentation.

This is a unique opportunity for someone passionate about building machine learning systems that go beyond prototypes — models that deliver real-world commercial outcomes in a data-rich, regulated environment.


Key Responsibilities

  • Lead a high-performing team of data scientists to deliver cross-functional, impactful AI/ML initiatives
  • Design and implement predictive models and machine learning solutions for core business areas
  • Build and productionise models in collaboration with data engineers and platform teams
  • Apply advanced statistical techniques to extract insights and guide product and pricing strategies
  • Work closely with stakeholders to understand requirements, define modelling goals, and demonstrate business value
  • Evaluate vendor data sources, assess economic and technical feasibility, and lead test-and-learn initiatives
  • Contribute to the modelling roadmap, experimentation frameworks, and internal data science tooling
  • Produce clean, maintainable, version-controlled code and refactor solutions into reusable libraries and APIs
  • Coach junior team members and promote best practices across the wider data and analytics community


Requirements


  • Ideally, 6+ years of hands-on experience applying data science techniques in commercial or research-led environments, delivering clear business outcomes
  • Advanced academic background (MSc or PhD) in a technical or quantitative field such as Machine Learning, Computer Science, or Statistics
  • Strong programming ability in Python (data science ecosystem) and SQL, with proven experience handling large, complex datasets
  • Solid track record of building, validating, and deploying machine learning models into real-world systems
  • Practical experience designing experiments, selecting evaluation metrics, and applying multivariate testing frameworks
  • Leadership mindset — you’ve mentored or managed data science colleagues or helped steer technical decisions in a collaborative team
  • Comfortable with version control (Git) and familiar with engineering workflows like CI/CD and containerised environments
  • Skilled at working with both structured and unstructured data to unlock insights and power models
  • Hands-on experience with Databricks, Apache Spark, or similar tools used in large-scale data processing
  • Exposure to machine learning model deployment using APIs or lightweight serving frameworks like Flask or Keras
  • Familiarity with geospatial data would be a great bonus!


If this role interests you and you would like to learn more, please apply here or contact us via (feel free to include a CV for review).

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist (Equity Only) - 1%

Lead Data Scientist - Finance

Lead Data Scientist

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for AI Jobs: 10 Tweaks That Triple Recruiter Views

In today’s fiercely competitive AI job market, simply having a LinkedIn profile isn’t enough. Recruiters and hiring managers routinely scout for top talent in machine learning, data science, natural language processing, computer vision and beyond—sometimes before roles are even posted. With hundreds of applicants vying for each role, you need a profile that’s optimised for search, speaks directly to AI-specific skills, and showcases measurable impact. By following this step-by-step LinkedIn for AI jobs checklist, you’ll make ten strategic tweaks that can triple recruiter views and position you as a leading AI professional. Whether you’re a fresh graduate aiming for your first AI position or a seasoned expert targeting a senior role, these actionable changes will ensure your profile stands out in feeds, search results and recruiter queues. Let’s dive in.

Part-Time Study Routes That Lead to AI Jobs: Evening Courses, Bootcamps & Online Masters

Artificial intelligence (AI) is reshaping industries at an unprecedented pace. From automating mundane tasks in finance to driving innovation in healthcare diagnostics, the demand for AI-skilled professionals is skyrocketing. In the United Kingdom alone, AI is forecast to deliver over £400 billion to the economy by 2030 and generate millions of new jobs across sectors. Yet, for many ambitious professionals, taking time away from work to upskill can feel like an impossible ask. Thankfully, part-time learning options have proliferated: evening courses, intensive bootcamps and flexible online master’s programmes empower you to learn AI while working. This comprehensive guide explores every route—from short tasters to deep-dive MScs—showcasing providers, course formats, funding options and practical tips. Whether you’re a career changer, a busy manager or a self-taught developer keen to go further, you’ll discover a pathway to fit your schedule, budget and goals.