National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Junior Machine Learning Engineer - AI startup

Founding Teams
Bradford
1 day ago
Create job alert

Job description


Founding Teams is a stealth AI Tech Incubator & Talent platform. We are supporting the next generation of AI startup founders with the resources they need including engineering, product, sales, marketing and operations staff to create and launch their product.


The ideal candidate will have a passion for next generation AI tech startups and working with great global startup talent.


About the Role:


We are looking for an experienced and highly motivated Lead Machine Learning Engineer to drive the development, deployment, and optimization of machine learning solutions. As a technical leader, you will collaborate closely with data scientists, software engineers, and product managers to bring cutting-edge ML models into production at scale. You'll play a key role in shaping the AI strategy and mentoring the machine learning team.


Responsibilities:


  • Lead the end-to-end development of machine learning models, from prototyping to production deployment.
  • Architect scalable ML pipelines and infrastructure.
  • Work closely with data scientists to transition research models into robust production systems.
  • Collaborate with engineering teams to integrate ML models into applications and services.
  • Manage and mentor a team of machine learning and data engineers.
  • Establish best practices for model development, evaluation, monitoring, and retraining.
  • Design experiments, analyze results, and iterate rapidly to improve model performance.
  • Stay current with the latest research and developments in machine learning and AI.
  • Define and enforce ML model governance, versioning, and documentation standards.


Required Skills & Qualifications:


  • Bachelor's or Master’s degree in Computer Science, Machine Learning, Data Science, Statistics, or a related field (PhD preferred but not required).
  • 3+ years of professional experience in machine learning engineering.
  • 2+ years of leadership or technical mentoring experience.
  • Strong expertise in Python for machine learning (Pandas, NumPy, scikit-learn, etc.).
  • Experience with deep learning frameworks such as TensorFlow, PyTorch, or JAX.
  • Strong understanding of machine learning algorithms (supervised, unsupervised, reinforcement learning).
  • Experience building and maintaining ML pipelines and data pipelines.
  • Proficiency in model deployment techniques (e.g., serving models with REST APIs, gRPC, or via cloud services).
  • Hands-on experience with cloud platforms (AWS, GCP, Azure) for model training and deployment.
  • Deep understanding of MLOps concepts: monitoring, logging, CI/CD for ML, reproducibility.
  • Experience with Docker and container orchestration (e.g., Kubernetes).


Preferred Skills:


  • Experience with feature stores (e.g., Feast, Tecton).
  • Knowledge of distributed training (e.g., Horovod, distributed PyTorch).
  • Familiarity with big data tools (e.g., Spark, Hadoop, Beam).
  • Understanding of NLP, computer vision, or time series analysis techniques.
  • Knowledge of experiment tracking tools (e.g., MLflow, Weights & Biases).
  • Experience with model explainability techniques (e.g., SHAP, LIME).
  • Familiarity with reinforcement learning or generative AI models.


Tools & Technologies:


  • Languages: Python, SQL (optionally: Scala, Java for large-scale systems)
  • ML Frameworks: TensorFlow, PyTorch, scikit-learn, XGBoost, LightGBM
  • MLOps: MLflow, Weights & Biases, Kubeflow, Seldon Core
  • Data Processing: Pandas, NumPy, Apache Spark, Beam
  • Model Serving: TensorFlow Serving, TorchServe, FastAPI, Flask
  • Cloud Platforms: AWS (SageMaker, S3, EC2), Google Cloud AI Platform, Azure ML
  • Orchestration: Docker, Kubernetes, Airflow
  • Databases: PostgreSQL, BigQuery, MongoDB, Redis
  • Experiment Tracking & Monitoring: MLflow, Neptune.ai, Weights & Biases
  • Version Control: Git (GitHub, GitLab)
  • Communication: Slack, Zoom
  • Project Management: Jira, Confluence


Related Jobs

View all jobs

Junior Machine Learning Engineer - AI startup

Junior Machine Learning Engineer - AI startup

Junior Machine Learning Engineer - AI startup

Junior Machine Learning Engineer - AI startup

Junior Machine Learning Engineer - AI startup

Junior Machine Learning Engineer - AI startup

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide – we refresh it every quarter so you always know who’s really scaling their artificial‑intelligence teams. Artificial intelligence hiring has roared back in 2025. The UK’s boosted National AI Strategy funding, record‑breaking private investment (£18.1 billion so far) & a fresh wave of generative‑AI product launches mean employers are jockeying for data scientists, ML engineers, MLOps specialists, AI product managers, prompt engineers & applied researchers. Below are 50 organisations that have advertised UK‑based AI vacancies in the past eight weeks or formally announced growth plans. They’re grouped into five easy‑scan categories so you can jump straight to the kind of employer – & culture – that suits you. For each company you’ll find: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, culture, mission) Use the internal links to browse current vacancies on ArtificialIntelligenceJobs.co.uk – or set up a free job alert so fresh roles land in your inbox.

Return-to-Work Pathways: Relaunch Your AI Career with Returnships, Flexible & Hybrid Roles

Stepping back into the workplace after a career break can feel like embarking on a whole new journey—especially in a cutting-edge field such as artificial intelligence (AI). For parents and carers, the challenge isn’t just refreshing your technical know-how but also securing a role that respects your family commitments. Fortunately, the UK’s tech sector now boasts a wealth of return-to-work programmes—from formal returnships to flexible and hybrid opportunities. These pathways are designed to bridge the gap, equipping you with refreshed skills, confidence and a supportive network. In this comprehensive guide, you’ll discover how to: Understand the booming demand for AI talent in the UK Leverage transferable skills honed during your break Overcome common re-entry challenges Build your AI skillset with targeted training Tap into returnship and re-entry programmes Find flexible, hybrid and full-time AI roles that suit your lifestyle Balance professional growth with caring responsibilities Master applications, interviews and networking Whether you’re returning after maternity leave, eldercare duties or another life chapter, this article will equip you with practical steps, resources and insider tips.

LinkedIn Profile Checklist for AI Jobs: 10 Tweaks That Triple Recruiter Views

In today’s fiercely competitive AI job market, simply having a LinkedIn profile isn’t enough. Recruiters and hiring managers routinely scout for top talent in machine learning, data science, natural language processing, computer vision and beyond—sometimes before roles are even posted. With hundreds of applicants vying for each role, you need a profile that’s optimised for search, speaks directly to AI-specific skills, and showcases measurable impact. By following this step-by-step LinkedIn for AI jobs checklist, you’ll make ten strategic tweaks that can triple recruiter views and position you as a leading AI professional. Whether you’re a fresh graduate aiming for your first AI position or a seasoned expert targeting a senior role, these actionable changes will ensure your profile stands out in feeds, search results and recruiter queues. Let’s dive in.