National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Graduate Data Scientist - Fraud

LexisNexis Risk Solutions
London
1 week ago
Applications closed

Related Jobs

View all jobs

Graduate Data Scientist

Graduate Data Scientist

Data Scientist - Graduate

Computer Science Graduate

Junior Data Scientist – Quantitative Market Research (Agency Side)

Data Scientist

About the business:LexisNexis Risk Solutions is the essential partner in the assessment of risk. Within our Business Services vertical, we offer a multitude of solutions focused on helping businesses of all sizes drive higher revenue growth, maximize operational efficiencies, and improve customer experience. Our solutions help our customers solve difficult problems in the areas of Anti-Money Laundering/Counter Terrorist Financing, Identity Authentication & Verification, Fraud and Credit Risk mitigation and Customer Data Management. You can learn more about LexisNexis Risk at the link below, https://risk.lexisnexis.com


About the team:You will be part of a team who use global data from the largest real-time fraud detection platform to craft solutions for our enterprise customers.


About the role:Your experience with data analysis, statistical modelling, and machine learning will lead to immediate real-world impact in the form of lower customer friction, reduced fraud losses and as a result, increased customer profitability. You’ll leverage a real-time platform analysing billions of transactions per month for some of the largest companies operating in Financial Services, Insurance, e-Commerce, and On-Demand Services. These tools will allow you to attain a unique perspective of the Internet, and every persona connected to it. On top of driving innovation projects, you’ll be continually collaborating with internal product and engineering teams, customer-facing account teams, and external business leaders and risk managers. The comprehensive models you build will go head-to-head against some of the most motivated attackers in the world to protect billions in revenue.


Responsibilities:

  • Scoping, developing, and implementing machine learning or rule-based models following best practice, to banking model governance standards
  • Using your strong knowledge of SQL and Python plus quantitative skills to define features that capture evolving fraudster behaviours
  • Develop internal tools to streamline the model training pipeline and analytics workflows
  • Applying your curiosity and problem-solving skills to transform uncertainty into value-add opportunities
  • Using your strong attention to detail and ability to craft a story through data, delivering industry-leading presentations for external and executive audiences
  • Building an extensive knowledge of cybercrime – account takeover, scams, social engineering, Card Not Present (CNP) fraud, money laundering and mule fraud etc
  • Employing your multi-tasking and prioritisation skills to excel in a fast-paced environment with frequently changing priorities


Requirements:

  • Experience in a data science role, ideally within the fraud, risk, or payments domain
  • Proficiency in Python and SQL (BI tools such as SuperSet, Tableau or PowerBI is a bonus)
  • Hands-on experience in machine learning model development, evaluation, and production deployment, with familiarity in MLOps principles to build scalable and standardised workflows and implement effective ML monitoring systems
  • Proven ability to create polished presentations and effectively communicate insights to customers with attention to detail
  • Have extensive multi-tasking and prioritisation skills. Needs to excel in fast paced environment with frequently changing priorities


Learn more about the LexisNexis Risk team and how we work here

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.

AI Jobs Salary Calculator 2025: Work Out Your Market Value in Seconds

Why your 2024 salary data is already outdated “Am I being paid what I’m worth?” It is the question that creeps in whenever you update your CV, see a former colleague announce a punchy pay rise on LinkedIn, or notice a recruiter slide into your inbox with a role that looks eerily similar to your current one—only advertised at £20k more. Artificial intelligence moves faster than any other hiring market. New frameworks are open‑sourced overnight, venture capital floods specific niches without warning, & entire job titles—Prompt Engineer, LLM Ops Specialist—appear in the time it takes most industries to schedule a meeting. In that environment, salary guides published only a year ago already look like historical curiosities. To give AI professionals an up‑to‑the‑minute benchmark, ArtificialIntelligenceJobs.co.uk has built a simple yet powerful salary‑calculation formula. By combining three variables—role, UK region, & seniority—you can estimate a realistic 2025 salary band in less than a minute. This article explains that formula, unpacks the latest trends driving pay, & offers concrete steps to boost your personal market value over the next 90 days.

How to Present AI Models to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

In today’s competitive job market, AI professionals are expected to do more than just build brilliant algorithms—they must also explain them clearly to stakeholders who may have no technical background. Whether you're applying for a role as a machine learning engineer, data scientist, or AI consultant, your ability to articulate complex models in simple terms is fast becoming one of the most valued soft skills in interviews and on the job. This guide will help you master the art of public speaking for AI roles, offering tips on structuring presentations, designing effective slides, and using storytelling to make your work resonate with any audience.