Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Global Data Engineering Lead

London
6 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning and AI Engineering Lead

Machine Learning Manager, London

Senior Applied Data Scientist

Machine Learning Engineering Lead

Staff Data Scientist - Experimentation: Innovation & Research

Data Scientist III (Large Language Models)

Data Engineering Lead

Join a leading global technology organisation that connects people, places, and things to help businesses thrive in a digital world. With expertise in connectivity and a leading IoT platform, this company delivers results that enable growth. As they transform into a Digital and Connectivity Services provider with a "Digital First" focus, they are committed to achieving double-digit revenue growth.

To succeed, the organisation must enhance customer experience and accelerate digitisation. The Digital Transformation and Customer Experience team plays a critical role in delivering a simpler, faster, and better customer experience.

Role Purpose: As a Data Engineering Lead, you will deliver customer-focused data projects for global markets. Your primary focus will be on supporting data and analytics capabilities across the digital advice service. You will also support the rollout of the customer data platform, marketing effectiveness capabilities, and AI projects.

What You'll Do:

Create and deliver global reporting suites and data visualisations for stakeholders.

Set up ETL processes, data schemas, and governance frameworks while being hands-on with data engineering.

Design and maintain automated data pipelines from multiple sources.

Generate customer insights across digital platforms (Adobe Analytics, Medallia, Tealium).

Support strategic data migration into Google Cloud Platform and maintain best practices.

Integrate new digital technologies to enhance data insights.

Design automated data quality monitoring systems.

Conduct complex data analysis, including ML and statistical modeling.

Explore AI/ML techniques for smarter solutions.

Manage stakeholder relationships across global markets.

Who You Are:

Experienced data engineer, data scientist, or similar role with strong practical expertise.

Proven experience in strategic analysis, business insights, and reporting.

Knowledgeable about data warehousing and cloud platforms with migration experience (e.g., AWS, Azure, GCP).

Proficient in Python and SQL.

Knowledge of machine learning and statistical modeling is a plus.

Experienced in Martech tools (Adobe, Tealium, CDP, SalesForce, Pega, Data Visualisation tools).

Strong analytical and problem-solving skills.

Experienced in delivering projects in a fast pacedc environment.

Understanding of data flows and business processes.

Excellent interpersonal and collaboration skills with the ability to work independently and manage multiple tasks.

We Are Aspire Ltd are a

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.