Forecasting Specialist

Leeds ICD
3 weeks ago
Create job alert

Forecasting Specialist

Arla Head Office, Leeds, LS10 1AB

Permanent, days-based role (Monday-Friday, 37.5 hours per week)

We are currently seeking a Forecasting Specialist to join our team. This role will provide essential support to our Finnish market and colleagues, whilst working alongside our UK Demand Planning team.

What do we offer?

  • Competitive salary (salary discussed at application stage)

  • 26 days holiday & Bank Holidays

  • Hybrid & flexible working

  • Pension contribution matched up to 6%

  • 4 x annual salary life assurance

  • Free to use onsite Gym

  • Access to discounted products in our Staff Shop

  • People agenda commitment to training and development

  • Flexible Benefits- buy up to 5 days additional annual leave, reward gateway scheme- discounts with various retailers via my benefit platform.

  • Most importantly - Cheese hamper at Christmas!

    How will you make an impact?

    Reporting into the Demand Planning Manager- Finland, this role will play a pivotal part in improving planning efficiency through data analytics and advanced forecasting. Responsibilities include assessing data, maintaining baseline forecasts, and applying machine learning for accurate forecasting. This requires a deep understanding of demand patterns, product lifecycles, and market trends.

    Further responsibilities include;

  • Ensure data completeness and quality.

  • Maintain and regularly review master data and planning parameters for demand planning.

  • Review automatic cleansing. Ensure final output (cleansed data) is completed in the system.

  • Generate and analyse historical demand performance reports incorporating relevant actions into future forecasting.

  • Analyze and provide initial baseline forecast for phase-in/phase-out products, considering cannibalization impacts and lifecycle changes

  • Select the most appropriate statistical models for demand segmentation, considering factors like seasonality, responsiveness, trend, and stability. Manage demand segmentation review and apply overrides if necessary (in alignment with Demand Planner).

  • Run and adjust the statistical baseline forecast & advance modeling (eg, ML), including parameter setting and forecast rollup.

  • Review and maximize demand sensing utilization.

  • Monitor and report on forecasting KPI’s (e.g., forecast accuracy, forecast BIAS, forecast value add) at multiple levels and lags and provide insights on contributing factors and improvement opportunities.

  • Provide descriptive and diagnostic insights about the previous cycle's forecast performance.

    What will make you successful

    The ideal candidate will have;

  • Strong experience within demand planning and demand planning systems (Experience with SAP IBP is a strong advantage)

  • Excellent data and analytical skills

  • Experience within a fast-paced FMCG environment is preferrable.

  • Technical proficiency

  • Possesses strong collaboration, organisation and teamwork skills

    Would you like to join us?

    If you are enthusiastic about joining our team and meet the qualifications listed above, we would love to hear from you.

    For more information please contact Olivia Pine, Talent Acquisition Partner at Arla Foods. The closing date for this position is the 19th March 2025 and only CV’s sent directly via the link will be considered

Related Jobs

View all jobs

Data Scientist

Data-Driven Forecasting Analyst – (Pharmaceutical Consultancy)

Data Consultant (Azure and D365) - Remote - £45k - £65k

Data Scientist - Thg Nutrition

Head of RV & SMR Risk

Head of RV & SMR Risk

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.