Senior Data Scientist – Risk Modelling

ADLIB
City of London
2 weeks ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

We’re looking for a commercially minded Senior Data Scientist with a passion for building risk models. If you’re the kind of data scientist who doesn’t just tweak existing models but creates them from scratch, this is your chance to make a real impact!


What you’ll be doing

This role is all about risk (we can’t stress that enough!). We’re looking for someone technically strong (likely a data scientist or similar) with a proven background in modelling risk across different environments.


As part of a specialist Risk Modelling Team, you’ll operate in a collaborative, matrix‑style environment. Your work will include model development, enhancement, and forecasting, ensuring outputs are accurate, robust, and clearly communicated.


This role is also a chance to work on variations of risk; you’ll model across multiple areas and projects, outside of a highly regulated environment. They need someone adaptable, curious, and genuinely passionate about risk modelling. Your projects could include insurance risk, asset risk, financial risk, pricing risk, credit risk, climate risk and more.


You’ll thrive on building and enhancing models from the ground up, bridging the gap between complex statistical techniques and clear, actionable insights for stakeholders. You’ll work closely with senior leaders, collaborate across functions, and play a key role in strategic projects. Sound like you? Apply now!


What experience you’ll need

  • Strong background in risk modelling and using these insights to inform business decisions
  • Proven experience building risk models from scratch and enhancing existing ones
  • Excellent skills in R, Python, or SAS
  • Experience leading complex model updates (both operational enhancements and full development projects) with clear communication of outcomes
  • Ability to present to stakeholders and translate risk issues into business applications
  • Exposure to multiple risk types (insurance, pricing, climate, asset, credit, etc.)
  • Knowledge of model risk management
  • Experience working outside regulated risk environments
  • Desirable: Industry experience in finance, automotive, or similar sectors, plus exposure to advanced techniques like machine learning or predictive modelling

What you’ll get in return

Up to £90,000 plus a 20%+ bonus, alongside a comprehensive benefits package. You’ll work from the London office three days per week, with flexibility to work remotely the rest of the time.


What’s next?

Apply with your CV, and we’ll be in touch to arrange a conversation if it’s a good fit! Got questions? Drop Tegan a message.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.