National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Financial Crime Screening - Data Scientist

Barclays UK
Glasgow
6 days ago
Applications closed

Related Jobs

View all jobs

Financial Crime Screening - Data Scientist

Analytics & Data Science Manager | London, UK

Analytics & Data Science Manager

Data Scientist - Core Analytics

Data Scientist - Core Analytics

Data Scientist - Core Analytics

This role offers the opportunity to work at theintersection of data science, regulatory compliance, and operational efficiency - delivering innovative solutions that drive smarter financial crime detection and prevention.

To be successful as a Financial Crime Screening - Data Scientist, you should have:

  • Experience in data science, analytics or quantitative research (preferably within financial services, compliance or risk domains).
  • Solid experience with Python, SQL.
  • Knowledge of financial crime screening (e.g. sanctions screening, PEP, AML, KYC or transaction monitoring) is highly desirable.


You may be assessed on the key critical skills relevant for success in role, such as risk and controls, change and transformation, business acumen, strategic thinking and digital and technology, as well as job-specific technical skills.

This role will be located in our Glasgow office.

Purpose of the role

To use innovative data analytics and machine learning techniques to extract valuable insights from the bank's data reserves, leveraging these insights to inform strategic decision-making, improve operational efficiency, and drive innovation across the organisation.

Accountabilities

  • Identification, collection, extraction of data from various sources, including internal and external sources.
  • Performing data cleaning, wrangling, and transformation to ensure its quality and suitability for analysis.
  • Development and maintenance of efficient data pipelines for automated data acquisition and processing.
  • Design and conduct of statistical and machine learning models to analyse patterns, trends, and relationships in the data.
  • Development and implementation of predictive models to forecast future outcomes and identify potential risks and opportunities.
  • Collaborate with business stakeholders to seek out opportunities to add value from data through Data Science.


Assistant Vice President Expectations

  • To advise and influence decision making, contribute to policy development and take responsibility for operational effectiveness. Collaborate closely with other functions/ business divisions.
  • Lead a team performing complex tasks, using well developed professional knowledge and skills to deliver on work that impacts the whole business function. Set objectives and coach employees in pursuit of those objectives, appraisal of performance relative to objectives and determination of reward outcomes
  • If the position has leadership responsibilities, People Leaders are expected to demonstrate a clear set of leadership behaviours to create an environment for colleagues to thrive and deliver to a consistently excellent standard. The four LEAD behaviours are: L - Listen and be authentic, E - Energise and inspire, A - Align across the enterprise, D - Develop others.
  • OR for an individual contributor, they will lead collaborative assignments and guide team members through structured assignments, identify the need for the inclusion of other areas of specialisation to complete assignments. They will identify new directions for assignments and/ or projects, identifying a combination of cross functional methodologies or practices to meet required outcomes.
  • Consult on complex issues; providing advice to People Leaders to support the resolution of escalated issues.
  • Identify ways to mitigate risk and developing new policies/procedures in support of the control and governance agenda.
  • Take ownership for managing risk and strengthening controls in relation to the work done.
  • Perform work that is closely related to that of other areas, which requires understanding of how areas coordinate and contribute to the achievement of the objectives of the organisation sub-function.
  • Collaborate with other areas of work, for business aligned support areas to keep up to speed with business activity and the business strategy.
  • Engage in complex analysis of data from multiple sources of information, internal and external sources such as procedures and practises (in other areas, teams, companies, etc).to solve problems creatively and effectively.
  • Communicate complex information. 'Complex' information could include sensitive information or information that is difficult to communicate because of its content or its audience.
  • Influence or convince stakeholders to achieve outcomes.


All colleagues will be expected to demonstrate the Barclays Values of Respect, Integrity, Service, Excellence and Stewardship - our moral compass, helping us do what we believe is right. They will also be expected to demonstrate the Barclays Mindset - to Empower, Challenge and Drive - the operating manual for how we behave.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.

AI Jobs Salary Calculator 2025: Work Out Your Market Value in Seconds

Why your 2024 salary data is already outdated “Am I being paid what I’m worth?” It is the question that creeps in whenever you update your CV, see a former colleague announce a punchy pay rise on LinkedIn, or notice a recruiter slide into your inbox with a role that looks eerily similar to your current one—only advertised at £20k more. Artificial intelligence moves faster than any other hiring market. New frameworks are open‑sourced overnight, venture capital floods specific niches without warning, & entire job titles—Prompt Engineer, LLM Ops Specialist—appear in the time it takes most industries to schedule a meeting. In that environment, salary guides published only a year ago already look like historical curiosities. To give AI professionals an up‑to‑the‑minute benchmark, ArtificialIntelligenceJobs.co.uk has built a simple yet powerful salary‑calculation formula. By combining three variables—role, UK region, & seniority—you can estimate a realistic 2025 salary band in less than a minute. This article explains that formula, unpacks the latest trends driving pay, & offers concrete steps to boost your personal market value over the next 90 days.

How to Present AI Models to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

In today’s competitive job market, AI professionals are expected to do more than just build brilliant algorithms—they must also explain them clearly to stakeholders who may have no technical background. Whether you're applying for a role as a machine learning engineer, data scientist, or AI consultant, your ability to articulate complex models in simple terms is fast becoming one of the most valued soft skills in interviews and on the job. This guide will help you master the art of public speaking for AI roles, offering tips on structuring presentations, designing effective slides, and using storytelling to make your work resonate with any audience.