Earth Observation Analyst

Dublin
11 months ago
Applications closed

Related Jobs

View all jobs

Senior Climate Data Scientist

Job Title: Earth Observation (EO) Data Scientist
Location: Ireland (Remote, with occasional client meetings and in-person training)
Must reside in Ireland

Salary: €55,000 - €60,000 per annum (depending on experience)
Job Type: Full-time
About the Role
Our client is seeking an experienced Earth Observation (EO) Data Scientist to join their team. This role is ideal for a professional with a strong background in EO data processing, machine learning applications, and cloud-based EO tools. The position is remote, but the candidate must be based in Ireland and available for occasional client meetings and training sessions.

Key Responsibilities

Process and analyze Earth Observation data, including optical and radar datasets.
Utilise common EO Python libraries such as GDAL, Pandas, and GeoPandas for data handling and analysis.
Develop and apply AI and machine learning models for EO applications.
Work with cloud-based EO platforms such as DIAS and Google Earth Engine (GEE).
Automate workflows and conduct time-series analysis for EO projects.
Develop and maintain scripts for Linux environments using Bash scripting.
Collaborate with clients and stakeholders to understand project requirements and deliver tailored solutions.
Document methodologies and findings clearly for both technical and non-technical audiences. Required Qualifications & Experience

Master’s degree in Earth Observation (EO), Geographic Information Systems (GIS), or a closely related field.
At least 4 years of industry experience working with EO data and processing techniques.
Strong knowledge of optical and radar data processing methods.
Experience in AI and machine learning model development and implementation.
Hands-on experience with cloud-based EO tools such as DIAS or Google Earth Engine (GEE).
Proficiency in Linux operating systems and basic Bash scripting.
Strong problem-solving skills and ability to work independently.
Excellent written and spoken English skills.
Must have permission to reside and work in Ireland (onshore applicants only). Benefits

Annual Leave: 22 days of holiday leave, increasing to 23 days with time served.
Additional Leave: Option to purchase extra annual leave.
Flexible Working: Work-from-home flexibility (full-time or part-time).
Family Benefits: Enhanced maternity and paternity benefits.
Pension Scheme: Employer-contributed pension plan.
Employee Assistance Programme (EAP):
Access to a health & wellness platform, including a digital gym, nutrition guides, and well-being tutorials.
EAP services for employees and their partners, including counselling support.
Health Insurance: Company-sponsored health insurance covering optical, dental, physiotherapy, and more.
Cycle to Work Scheme: Option to participate in the cycle-to-work programme.
Professional Development: Continuous professional development opportunities. Eligibility
Candidates must have valid permission to work and reside in the European Union and the Republic of Ireland. The candidate must currently reside on the island of Ireland for this position.
If you meet the criteria and are passionate about Earth Observation and geospatial analytics, we encourage you to apply

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.