Director, QA Data Analytics

Abbott
Witney
1 year ago
Applications closed

Related Jobs

View all jobs

Freelance Spatial AI and Machine Learning Consultant

Freelance Spatial AI and Machine Learning Consulta - Remote

Director of Data Science

Director of Data Science

Director of Software Engineering: Observability & AIOps

Executive Director: BHF Data Science Centre

The Opportunity

Abbott Diabetes Care (ADC) is looking for a Director of QA Data Analytics. This person will be responsible for defining and executing the global QA Systems and Data Analytics strategy to ensure a sustainable global model can be delivered through established governance, standards, and validated data analytic tools. They will partner with cross-functional business leaders and key stakeholders to identify system and data analytic opportunities that will reduce compliance risk, provide early signals to minimize business impact to our products, drive global standardization, and improve efficiencies by minimizing non-value-added activities.

What You'll Work OnDevelop and manage the QA Systems and Data Analytics strategy and roadmap for ADC Quality Organization. Effectively communicate the analytics approach and how it will meet and address objectives to business partners and leaders Assure the quality systems and data analytic tools are in compliance with Corporate and Division policies and procedures to support quality decision making and internal/external audits Collaborate with key stakeholders to understand business problems to implement scalable and sustainable solutions utilizing cutting-edge technologies and tools Design, create, test, and implement complex models that drive analytical solutions throughout the quality organization that provide actionable insights, identify trends, and measure performance Design, build, and implement systems and tools for collecting, cleaning, and storing appropriate data to support statistical models and business analysis Stay abreast of developments at the intersection of data science, technology, and business relevant to the company and drive business innovation through analytics Determines end results company needs to accomplish, sets objectives to achieve end results, and determines how objectives will be achieved Establishes operating objectives and functional policies, usually through membership on the senior executive team Defines entire Quality & Operations Digital Framework (see below) and our data visualization needs across manufacturing, post market complaints and customer insights in conjunction with our operations colleagues. This framework will have global impact across the manufacturing and quality organization. Quality Digital Framework: Establish Data Governance Program for data & analytic initiatives to enable One Quality System, Safeguard and Industry 4.0 Establish Data Management to empower continuous improvement and provide a primary source of truth, empowering insights. Build automated analysis and reporting of key performance metrics, reducing manual reporting and data compilation. Build a Data Catalog with prioritized datasets from systems used in manufacturing, quality and ERP, reducing data acquisition time. Generative AI and Machine Learning assessments Increase use of our digital systems to maximize intelligent solutions and increase quality complianceRequired QualificationsBachelor's degree in Operations Management, Data Engineering, Data Science, Business Analytics, or related field 16+ years of relevant industry experience
 *

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.