Director of Architecture

Tangent International
1 year ago
Applications closed

Related Jobs

View all jobs

Director of Machine Learning

Staff / VP, Machine Learning Engineer (UK)

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Associate Director, Data Science/Gen AI Lead - ER&I

Director of Architecture


Director of Architecture, Join a pioneering leader in the financial crime and fraud prevention sector as a Director of Architecture. In this role, you’ll define and implement advanced, machine learning-driven solutions, guiding an agile team to ensure performance, scalability, and architectural integrity. This is a unique opportunity to build a next-generation machine learning platform from the ground up, ensuring robust fraud detection and prevention for financial institutions worldwide.


Role Overview


As the Director of Architecture, you’ll lead transformative machine learning initiatives, leveraging your expertise to design and oversee a high-performance, cloud-native fraud detection platform. This role is ideal for a strategic leader with a hands-on approach, combining deep knowledge of enterprise and solution architecture with a track record in machine learning platform development. You’ll also champion a culture of continuous innovation and growth within a close-knit team that embraces wearing multiple hats.


Key Responsibilities


  • Build and Lead: Architect and implement a machine learning platform that integrates seamlessly with existing solutions, enhancing real-time fraud detection capabilities.
  • Define and Drive Transformation: Establish a clear machine learning architecture roadmap, working closely with engineering teams to bring strategic solutions from concept through full implementation.
  • Hands-On Leadership: Lead a small team, staying hands-on while overseeing all phases of architecture from enterprise to solution level, ensuring agility and innovation remain at the forefront.
  • End-to-End Product Lifecycle: Drive product development through the entire lifecycle, implementing machine learning solutions that improve fraud detection accuracy and system scalability.
  • Collaborate for Strategic Alignment: Partner with Product, Engineering, and Operations to ensure machine learning projects are aligned with business objectives and optimized for high-volume, low-latency environments.
  • Enterprise and Real-Time Architecture Expertise: Create high-availability systems for fraud prevention, leveraging your knowledge of real-time machine learning architecture for critical, low-latency solutions.


Must-Have Technical Experience


  • Machine Learning Platform Development: Proven success in building machine learning architectures from the ground up within enterprise environments.
  • Enterprise to Solution Architecture Expertise: Ability to conceptualize and guide the transition from high-level enterprise architecture to actionable solution architecture.
  • Fraud Prevention Background: At least 5 years of experience within the fraud prevention domain, implementing or overseeing machine learning initiatives.
  • Cloud Architectures and Data Science Knowledge: Proficiency in cloud-based infrastructures, SaaS architectures, and familiarity with machine learning concepts.
  • SAFe Experience:Proven experience working within a SAFe (Scaled Agile Framework) environment, with a strong understanding of agile methodologies at scale.



Ideal Profile


  • 10+ years of architecture experience, ideally combining bothenterpriseandsolution architecturebackgrounds.
  • 5+ years leading small, agile teams (5 people or fewer), with hands-on involvement in development and project oversight.
  • Strong Communication and Collaboration: Skilled at aligning technical strategies with business objectives and comfortable presenting to senior leadership and external stakeholders.
  • SAFe Experience:Proven experience working within a SAFe (Scaled Agile Framework) environment, with a strong understanding of agile methodologies at scale.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.