Digital Audit - Senior Associate - Gen AI Pod

PwC
London
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Senior Machine Learning Engineer

Data Scientist – Fraud Strategic Analytics Associate

Freelance Spatial AI and Machine Learning Consultant

Informatics Data Science Manager

The Role

 

At the GenAI Pod, we’re pushing the boundaries of what’s possible. As a Senior Associate in our GenAI Lab start-up, you will:

Pioneer the design, development, and deployment of production machine learning pipelines

Shape machine learning-enabled, Audit applications

Deliver high-quality code contributions to our evolving codebase

Monitor and review live production models

Lead and guide workstreams on projects within your specialisation

Mentor and manage junior engineers on impactful workstreams

Skills and Experience

A passionate data scientist, who has invested time in understanding Generative AI and experienced the power of LLM

Practical experience from industry and professional services in delivering significant and valuable advanced analytics projects and/or assets

Engagement of technical and senior stakeholders

Ability to manage and coach a team of data scientists

Delivery of projects on time and in budget for high profile clients

Understanding of requirements for software engineering and data governance in data science

We make extensive use of the following technologies in our team. We expect you to be fluent with using these tools and practices on a daily basis.

Bachelor's degree (or more) in computer science / Data Science or a related technical discipline

Experience in Natural Language Processing

Extensive experience with modern Deep Learning (PyTorch/TensorFlow)

Experience with any of the following NLP tasks - named entity recognition, intelligent document processing, website parsing & classification, sentiment analysis, information retrieval, entity matching & linking, spelling correction

Strong knowledge of Mathematical Statistics, Algorithms & Data Structures, ML Theory

Strong knowledge of Python & SQL

Strong debugging skills

Git for version control

Azure / GCP for our cloud backend

Skills we’d like to hear about

Experience working with large data pipelines (using technologies such as Beam or Kafka)

Experience in LLMs using OpenAI, Gemini or open source models

Exposure to other programming languages (such as Java)

Experience of working on a project using agile concepts (such as working in sprints)

Familiarity with working in an MLOps environment.

Experience working with search engines (such as Elasticsearch)

)


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.