Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist -UAE National, AWS Generative AI Innovation Center

Amazon
Edinburgh
2 days ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist - Remote

Data Scientist - Palantir

Data Scientist Python Software - London (IT) / Freelance

Data Scientist

Data Scientist -UAE National , AWS Generative AI Innovation Center

Job ID: 3013785 | Amazon Web Services EMEA Dubai FZ Branch - Q29

Amazon launched the Generative AI Innovation Center (GenAIIC) in June 2023 to help AWS customers accelerate the use of generative AI to solve business and operational problems and promote innovation in their organization. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. (https://press.aboutamazon.com/2023/6/aws-announces- generative-ai-innovation-center).

We’re looking for Data Scientists to use generative AI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems.
You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience.

As an early-in-career joiner, you will initially join our A2C (Associate to Consultant) program for intensive training on AWS technology and delivery approach.

Emirati nationality is required.


Key job responsibilities
As a Data Scientist, you will

- Collaborate with AI/ML scientists, engineers, and architects to Research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges

- Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production

- Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder

- Provide customer and market feedback to Product and Engineering teams to help define product direction


About the team
The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train or fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The Generative AI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently.

Diverse Experiences
AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.

Why AWS?
Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.

Inclusive Team Culture
Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.

Mentorship & Career Growth
We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.

Work/Life Balance
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.


BASIC QUALIFICATIONS

- PhD or Master's degree or equivalent experience
- Experience building a range of AI/ML models
- Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing, neural deep learning methods and/or machine learning

PREFERRED QUALIFICATIONS

Experience in using Python and hands on experience building models with deep learning frameworks like Tensorflow, Keras, PyTorch, MXNet
- Prior experience in training and fine-tuning of Large Language Models (LLMs)
- Knowledge of AWS platform and tools

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.

Posted: June 12, 2025 (Updated 16 days ago)

Posted: November 1, 2024 (Updated 6 months ago)

Posted: October 29, 2024 (Updated 8 months ago)

Amazon is an equal opportunity employer and does not discriminate on the basis of protected veteran status, disability, or other legally protected status.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.