National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist - Synthetic Data Team

Ipsos
7 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Science Placement Programme

Data Science Placement Programme

Data Scientist - Synthetic Data Team 

Who We Are

Ipsos is one of the world’s largest research companies and currently the only one primarily managed by researchers, ranking as a #1 full-service research organization for four consecutive years. With over 75 different data-driven solutions, and presence in 90 markets, Ipsos brings together research, implementation, methodological, and subject-matter experts from around the world, combining thematic and technical experts to deliver top-quality research and insights. Simply speaking, we help the biggest companies solve some of their biggest problems, serving more than 5000 clients across the globe by providing research, data, and insights on their target markets.

Role Overview:

As a Data Scientist on the Synthetic Data Team at Ipsos, you will play a crucial role in advancing our capabilities in leveraging synthetic data for market research. You will collaborate with a talented team of data scientists and engineers to explore use cases, validate methodologies, and develop innovative solutions that harness the potential of synthetic data to enhance our research offerings.

Impact of Role:

Your work will have a significant impact on shaping the future of market research at Ipsos. By pioneering the use of synthetic data, you will contribute to the development of more efficient, cost-effective, and privacy-preserving research methods. Your insights and solutions will empower our clients to make data-driven decisions with greater confidence and agility.

What you will be doing:

Design, implement, and evaluate synthetic data generation algorithms and models, either proprietary, prebuilt or third-party, including Generative Adversarial Networks (GANs) and other generative AI techniques. Test and validate the effectiveness of synthetic data in replicating the statistical properties and patterns of real-world data while ensuring privacy standards are met. Collaborate with cross-functional teams to identify and prioritise use cases for synthetic data in areas such as market research, customer insights, and predictive analytics. Develop and test synthetic data use cases, exploring innovative applications and improving data quality and utility for various analytical purposes. Set up metrics and frameworks to assess the quality, diversity, and utility of synthetic data generated, ensuring it meets the required standards for different use cases Stay abreast of latest advancements and research in generative AI & synthetic data techniques. Conduct research and experiments to push the boundaries of Ipsos' synthetic data capabilities. Work closely with data engineers, analysts, and other stakeholders to integrate synthetic data solutions into projects, teams and Service Lines  Communicate complex technical concepts and findings effectively to less technical stakeholders, providing insights and recommendations based on synthetic data analyses. Document methodologies, processes, and findings to ensure transparency and reproducibility of synthetic data projects. Share knowledge and best practices within the team and across the organisation, contributing to training sessions and internal seminars.

You're the right person, if…

You have a PhD or a Master’s in a quantitative field such as Statistics, Mathematics, Computer Science, or a related discipline You have a solid foundation in statistical analysis, data mining, and machine learning, with experience applying these skills to real-world datasets. You are proficient in Python and have experience with data science libraries like pandas, scikit-learn, and TensorFlow or PyTorch You have a deep understanding of generative models, such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs) and other techniques used for synthetic data generation such as SMOTE You are knowledgeable about the ethical considerations and best practices in generating synthetic data, including privacy preservation and data security. You possess strong problem-solving skills and can develop innovative solutions to complex data challenges, particularly in the context of synthetic data use cases You have a curious mindset, always looking to explore new methodologies, tools, and applications in the field You are familiar with data visualisation tools (., Matplotlib, Seaborn, or Tableau) and can effectively present data insights and findings You have experience with big data technologies and cloud platforms (., AWS, Google Cloud, Azure) and can work with large-scale datasets You have a good understanding of data privacy regulations and best practices, ensuring that synthetic data projects comply with legal and ethical standards You enjoy working in a collaborative environment, partnering with data engineers, analysts, and other team members to integrate and apply synthetic data solutions. You are an effective communicator who can clearly articulate complex concepts and findings to both technical and non-technical stakeholders

If you don’t meet 100% of the requirements, we encourage all who feel they might be a fit for the opportunity to apply. 


What’s in it for you:

At Ipsos you’ll experience opportunities for Career Development, an exceptional benefits package (including generous annual leave/paid time off, healthcare plans, wellness benefits), a flexible workplace policy, and a strong collaborative culture.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide – we refresh it every quarter so you always know who’s really scaling their artificial‑intelligence teams. Artificial intelligence hiring has roared back in 2025. The UK’s boosted National AI Strategy funding, record‑breaking private investment (£18.1 billion so far) & a fresh wave of generative‑AI product launches mean employers are jockeying for data scientists, ML engineers, MLOps specialists, AI product managers, prompt engineers & applied researchers. Below are 50 organisations that have advertised UK‑based AI vacancies in the past eight weeks or formally announced growth plans. They’re grouped into five easy‑scan categories so you can jump straight to the kind of employer – & culture – that suits you. For each company you’ll find: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, culture, mission) Use the internal links to browse current vacancies on ArtificialIntelligenceJobs.co.uk – or set up a free job alert so fresh roles land in your inbox.

Return-to-Work Pathways: Relaunch Your AI Career with Returnships, Flexible & Hybrid Roles

Stepping back into the workplace after a career break can feel like embarking on a whole new journey—especially in a cutting-edge field such as artificial intelligence (AI). For parents and carers, the challenge isn’t just refreshing your technical know-how but also securing a role that respects your family commitments. Fortunately, the UK’s tech sector now boasts a wealth of return-to-work programmes—from formal returnships to flexible and hybrid opportunities. These pathways are designed to bridge the gap, equipping you with refreshed skills, confidence and a supportive network. In this comprehensive guide, you’ll discover how to: Understand the booming demand for AI talent in the UK Leverage transferable skills honed during your break Overcome common re-entry challenges Build your AI skillset with targeted training Tap into returnship and re-entry programmes Find flexible, hybrid and full-time AI roles that suit your lifestyle Balance professional growth with caring responsibilities Master applications, interviews and networking Whether you’re returning after maternity leave, eldercare duties or another life chapter, this article will equip you with practical steps, resources and insider tips.

LinkedIn Profile Checklist for AI Jobs: 10 Tweaks That Triple Recruiter Views

In today’s fiercely competitive AI job market, simply having a LinkedIn profile isn’t enough. Recruiters and hiring managers routinely scout for top talent in machine learning, data science, natural language processing, computer vision and beyond—sometimes before roles are even posted. With hundreds of applicants vying for each role, you need a profile that’s optimised for search, speaks directly to AI-specific skills, and showcases measurable impact. By following this step-by-step LinkedIn for AI jobs checklist, you’ll make ten strategic tweaks that can triple recruiter views and position you as a leading AI professional. Whether you’re a fresh graduate aiming for your first AI position or a seasoned expert targeting a senior role, these actionable changes will ensure your profile stands out in feeds, search results and recruiter queues. Let’s dive in.