Data Scientist (Sports Betting)

Xcede
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist - Measurement Specialist

Data Scientist (Predictive Modelling) – NHS

Data Scientist

Data Scientist

Data Scientist (Sports Betting)

Up to £75,000 Salary + Strong Bonus

London office x1 per week



OVERVIEW


A successful Sports Analytics/ Sports Betting Scale-Up are hiring for a Data Scientist with proven experience in sports betting/ sports modelling to join their strong Data team. As a Data Scientist you will be building Machine Learning models leveraging a range of statistical/ probabilistic/ ML modelling techniques to build insights on the prediction of football results.



YOUR SKILLS & EXPERIENCE


A successful Data Scientist (Sports Betting) will have the following:


  1. Must have proven experience in sports betting/ sports trading through Data Science/ Machine Learning.
  2. Minimum of 2:1 degree in STEM subject
  3. Strong coding skills in Python & exposure to time series analysis & Bayesian modelling.
  4. Preferably will have a strong interest in Football and experience modelling the predictions of games.



HOW TO APPLY

Please register your interest by sending your CV to or click the Apply Link for more info!

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.