Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist Intern (3 months)

SLB
Abingdon
4 days ago
Create job alert

Job Title:


Data Scientist Intern (3 months) - Starting Summer 2026

Project Title: ​​Inverse problems using physics informed neural proxy models ​

About SLB:


We are a global technology company, driving energy innovation for a balanced planet.


At SLB we create amazing technology that unlocks access to energy for the benefit of all. That is our purpose. As innovators, that has been our mission for 100 years. We are facing the world’s greatest balancing act- how to simultaneously reduce emissions and meet the world’s growing energy demands. We’re working on that answer. Every day, a step closer.


Our collective future depends on decarbonizing the fossil fuel industry, while innovating a new energy landscape. It’s what drives us. Ensuring progress for people and the planet, on the journey to net zero and beyond. For a balanced planet.


Our purpose: Together, we create amazing technology that unlocks access to energy for the benefit of all. You can find out more about us on

Location:


Abingdon, Oxfordshire

Description & Scope:


Numerical simulation remains the only reliable method to solve partial differential equations to predict future states of a complex physical system - be it weather, fluid flow, quantum dynamics or orbital mechanics. SLB’s state-of-the-art reservoir simulator is used to model such a fluid flow in porous media for various applications, including Carbon Capture and Storage (CCS) and geothermal energy systems. The drawback of traditional numerical methods, however, is that they are computational very intensive and are not practical for many realistic workflows.

In this project, you will work on developing a physics-informed machine learning model to predict how a reservoir system behaves when CO2 (or any other fluid) is injected into it. Machine Learning models have provably been shown to run orders of magnitude faster than conventional simulators and, once trained, provide a promising alternative or enhancement to traditional solvers. The ultimate goal is to use the developed machine learning model and embed these in complex field development planning workflows. You will work on ensemble optimization and inverse problems. ​

Responsibilities


As part of the Numerical Simulation team:

You will work on developing a physics-informed machine learning model to solve Partial Differential Equations on general grids and geometries. You will have access to high-fidelity 3D simulator data to develop and train novel Neural Operator and Graph Neural Network architectures. You will also be integrating this model into full workflows to show that ML solutions run orders of magnitude faster than traditional methods and will have the opportunity to publish in top-tier ML and Applied Mathematics conferences/journals (ICML, NeurIPs, ICLR

Qualifications:

​​Studying a PhD​ in ​Applied Mathematics, Applied Physics, Data Science or a related discipline ​​Strong mathematical concepts around Optimization and Inverse theory Partial Differential Equations Python PyTorch/Tensorflow​

Related Jobs

View all jobs

Data Scientist Intern (3 months)

2026 Data Scientist Internship, Amazon University Talent Acquisition

Data Scientist Senior Consultant - Belfast

Data Scientist Consultant

Product Engineering Data Scientist Soho, London

Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.