Data Science Trainee

IT Career Switch
Coventry
1 month ago
Applications closed

Related Jobs

View all jobs

AI/Data Scientist

Machine Learning Engineer (Manager)

Senior Data Scientist

Data Science Practitioner

Data science programme lead

Data science programme lead

Trainee Data Scientist - No Experience RequiredAre you looking to kick-start a new career as a Data Scientist?We are recruiting for companies who are looking to employ our Data Science Traineeship graduates to keep up with their growth. The best part is you will not need any previous experience as full training will be provided. You will also have the reassurance of a job guarantee (£25K-£45K) within 20 miles of your location upon completion.

Whether you are working full time, part-time or unemployed, this package has the flexibility to be completed at a pace that suits you.The traineeship is completed in 4 easy steps, you can be placed into your first role in as little as 6-12 months:

Step 1 - Full Data Science Career Training

You will begin your data science journey by studying a selection of industry-recognized courses that will take you from beginner level all the way through to being qualified to work in a junior Data Scientist role. Through the interactive courses, you will gain knowledge in Python, R, Machine Learning, AI, and much more. You will also complete mini projects to gain practical experience and test your skills while you study.

Step 2 - CompTIA Data+

CompTIA Data+ is an early-career data analytics certification for professionals tasked with developing and promoting data-driven business decision-making. It teaches Data Mining...

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.