Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Science Manager

Ralph Lauren Corporation
City of London
1 week ago
Create job alert

Ralph Lauren Corporation (NYSE:RL) is a global leader in the design, marketing and distribution of premium lifestyle products in five categories: apparel, accessories, home, fragrances, and hospitality. For more than 50 years, Ralph Lauren's reputation and distinctive image have been consistently developed across an expanding number of products, brands and international markets. The Company's brand names, which include Ralph Lauren, Ralph Lauren Collection, Ralph Lauren Purple Label, Polo Ralph Lauren, Double RL, Lauren Ralph Lauren, Polo Ralph Lauren Children, Chaps, among others, constitute one of the world's most widely recognized families of consumer brands.


Position Overview

We’re looking for a passionate and experienced Data Scientist Manager to lead personalization efforts within Ralph Lauren’s CRM ecosystem. You’ll develop predictive models and recommendation systems that enhance customer engagement across global markets.


Lead development of machine learning solutions for CRM personalization.


Build and optimize recommendation engines using neural networks and deep learning, incorporating product embeddings and other advanced features to improve relevance and performance.


Collaborate with CRM and regional marketing teams to align with campaign goals and customer segmentation strategies.


Own the full ML lifecycle—from model design to deployment and monitoring.


Partner with engineering and data teams to ensure scalable solutions.


Continuously monitor and improve model performance using data insights and feedback.


Experience, Skills & Knowledge

  • Proven experience in machine learning, particularly in recommendation systems and deep learning architectures.
  • Strong understanding of two-tower neural networks, embedding techniques, and ranking models.
  • Proficiency in Python with familiarity to ML libraries e.g. pandas, numpy, scipy, scikit-learn, tensorflow, pytorch.
  • Familiarity with cloud platforms (GCP, AWS, Azure) and tools like Dataiku.
  • Experience with ML Ops, including model deployment, monitoring, and retraining pipelines.
  • Ability to work cross-functionally with marketing, CRM, and engineering teams.
  • Excellent communication and stakeholder management skills.
  • Experience in a global or multi-regional context is a plus.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.