Data Engineer 70k

Birmingham
2 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer (Airport/Manufacturing Experience Required)

Job Title: Data Engineer

Location: Birmingham

Salary: £50,000 - £70,000 per year + Bonus

Benefits:

Private Health-care
Generous Bonus Scheme
Flexible Working Options (Remote/Hybrid)About the Role:
My client, a leading organisation in manufacturing, is seeking a skilled Data Engineer to join their growing team. This is an exciting opportunity for a data enthusiast with experience in designing, building, and optimizing data pipelines to help drive data-driven decision-making across the company.

Key Responsibilities:

Data Pipeline Development: Design, implement, and maintain robust data pipelines to support the organisation's analytic and reporting needs.
ETL Processes: Build and optimise ETL processes to ensure seamless integration of data from various sources.
Database Management: Work with relational and non-relational databases, ensuring high performance, reliability, and scalability.
Collaboration: Collaborate closely with data scientists, analysts, and business stakeholders to ensure data is clean, accessible, and actionable.
Data Quality & Security: Ensure high standards for data integrity, quality, and security throughout the data life cycle.
Cloud Technologies: Utilize cloud platforms like AWS, GCP, or Azure for data storage, processing, and deployment of data solutions.
Performance Optimisation: Monitor and optimise the performance of existing data systems, troubleshooting and resolving any data-related issues.Skills & Experience:

Proven experience as a Data Engineer, or in a similar data-focused role.
Strong proficiency in SQL and programming languages such as Python, Java, or Scala.
Experience with cloud platforms (AWS, Azure, GCP) and big data tools (e.g., Hadoop, Spark).
Knowledge of data warehousing concepts and data modelling best practices.
Familiarity with modern data orchestration tools and ETL frameworks.
Excellent communication skills, with the ability to collaborate effectively with both technical and non-technical teams.
Strong problem-solving abilities and a proactive approach to tackling challenges.Preferred Qualifications:

Experience working with real-time data processing and streaming technologies with around 5 years experience.
Familiarity with containerisation technologies like Docker and Kubernetes.
Understanding of machine learning concepts and supporting data infrastructure.Why Join My Client?

Competitive salary (£50,000 - £70,000) with performance-based bonuses.
Comprehensive private health-care plan.
Generous benefits package including flexible working options.
Dynamic and inclusive team environment.
Opportunities for career growth and professional development in an innovative, data-driven company.If you are a passionate Data Engineer with a strong background in building and optimising data systems, this could be the perfect opportunity for you! Apply now to take the next step in your career

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.