Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Credit Risk Manager

TF Bank
London
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Data Scientist

As aCredit Risk Manageryou will develop datadriven strategies analyse trends and optimize credit policies for credit cards. Collaborating with teams across Europe youll provide insights to drive business growth and foster innovation in credit risk management.


Key responsibilities:

  • Be a handson expert in credit risk area.
  • Collect and analyze data from various sources including internal systems Credit Bureaus to identify trends patterns and opportunities.
  • Analyse and make recommendations that help the development of credit policy scorecards and limit management strategies for credit cards.
  • Provide actionable insights and recommendations to stakeholders based on data analysis helping them make informed decisions and drive business growth.
  • Foster a culture of datadriven decision making within the organization promoting the use of analytics to drive continuous improvement and innovation.
  • Collaborate with other analytical teams across the European organization.


Qualifications and previous experience:

  • Master degree in a relevant field such as Mathematics Statistics Economics Quantitative Methods Computer Science or Engineering.
  • Minimum of 5 years of experience in analytics or a data science field.
  • Practical knowledge of the British credit card market and Credit Bureaus.
  • Experience in consumer finance credit risk area in banks or fintechs.
  • Deep understanding of credit card products including risk and profitability drivers.
  • Excellent analytical and problemsolving skills with a strong attention to detail. Algorithmic and creative approach to solving problems.
  • Proven track record of delivering impactful insights and recommendations based on data analysis.


Skills:

  • Proficiency in data modelling methodologies and statistical analysis techniques.
  • Excellent knowledge of SQL for data extraction and manipulation.
  • Experience in predictive modelling using logistic regression is required.
  • Knowledge of programming languages such as Python or R will be a plus.
  • Fluent English to be able to collaborate with colleagues from other countries.
  • Good communication and presentation skills with the ability to translate complex data into clear and actionable insights.
  • Ability to work effectively in a fastpaced dynamic environment managing multiple priorities and meeting deadlines.


Location:London


Key Skills
Arm,Risk Management,Financial Services,Cybersecurity,COSO,PCI,Root cause Analysis,COBIT,NIST Standards,SOX,Information Security,RMF
Employment Type :Full Time
Experience:years
Vacancy:1

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.