Senior Data Scientist

Lendable
City of London
3 weeks ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

About Lendable

Lendable is on a mission to make consumer finance amazing: faster, cheaper, and friendlier. We're building one of the world’s leading fintech companies and are off to a strong start:

  • One of the UK’s newest unicorns with a team of just over 600 people

  • Among the fastest-growing tech companies in the UK

  • Profitable since 2017

  • Backed by top investors including Balderton Capital and Goldman Sachs

  • Loved by customers with the best reviews in the market (4.9 across 10,000s of reviews on Trustpilot)

So far, we’ve rebuilt the Big Three consumer finance products from scratch: loans, credit cards and car finance. We get money into our customers’ hands in minutes instead of days.

We’re growing fast, and there’s a lot more to do: we’re going after the two biggest Western markets (UK and US) where trillions worth of financial products are held by big banks with dated systems and painful processes.

Join us if you want to
  1. Take ownership across a broad remit. You are trusted to make decisions that drive a material impact on the direction and success of Lendable from day 1

  2. Work in small teams of exceptional people, who are relentlessly resourceful to solve problems and find smarter solutions than the status quo

  3. Build the best technology in-house, using new data sources, machine learning and AI to make machines do the heavy lifting

About the role

We are excited to be hiring a new Senior Data Scientist for our team! Ideally, this role will suit someone with a proven background in building models ideally in credit, lending, or other areas of financial services. Lendable is the market leader in real rate risk-based pricing, offering consumers transparency and product assurance at the point of application. Data Science sits at the heart of this USP, developing the credit risk models to underwrite loan and credit card products.

You will have access to the latest machine learning techniques combined with a rich data repository to deliver best in market risk models.

This role will primarily focus on our US unsecured loans and credit cards business.

Our team’s objectives

  • The data science team develops proprietary machine learning models combining state-of-the-art techniques with a variety of data sources that inform scorecard development and risk management, optimise marketing and pricing, and improve operations efficiency.

  • Research new data sources and unstructured data representation.

  • Data scientists work across the business in a multidisciplinary capacity to identify issues, translate business problems into data questions, analyse and propose solutions.

  • Deliver data services to a wide variety of stakeholders by engineering CLI programs / APIs.

  • Design, implement, manage and evaluate experiments of products and services leading to constant innovation and improvement.

How you’ll impact those objectives

  • Use your expertise to build and deploy models that contribute to the success of the business.

  • Stay up to date with the latest advancements in machine learning and credit risk modelling proactively proposing new approaches and projects that drive innovation.

  • Learn the domain of products that Lendable serves, understanding the data that informs strategy and risk modelling.

  • Extract, parse, clean and transform data for use in machine learning.

  • Clearly communicate results to stakeholders through verbal and written communication.

  • Mentor other data scientists and promote best practices throughout the team and business.

Key Skills

  • Knowledge of machine learning techniques and their respective pros and cons.

  • Ability to communicate sophisticated topics clearly and concisely.

  • Proficiency with creating ML models in Python with experiment tracking tools, such as MLFlow.

  • Curiosity, creativity, resourcefulness and a collaborative spirit.

  • Interest in problems related to the financial services domain - a knowledge of loan or credit card underwriting is advantageous.

  • Confident communicator and contributes effectively within a team environment.

  • Experience mentoring or leading others.

  • Self-driven and willing to lead on projects / new initiatives.

Familiarity with data used within credit risk decisioning such as Credit Bureau data, especially across multiple geographies is an advantage.

The interview process

We’re not corporate, so we try our best to get things moving as quickly as possible. For this role, we’d expect:

  • A quick phone call with the people team

  • Interview with hiring manager

  • Take home task

  • Task debrief

  • Case study interview

  • In person interview where you'll do your final round and have some lunch with the team

Life at Lendable
  • The opportunity to scale up one of the world’s most successful fintech companies.

  • Best-in-class compensation, including equity.

  • You can work from home every Monday and Friday if you wish - on the other days, those based in the UK come together IRL at our Shoreditch office in London to be together, build and exchange ideas.

  • Enjoy a fully stocked kitchen with everything you need to whip up breakfast, lunch, snacks, and drinks in the office every Tuesday-Thursday.

  • We care for our Lendies’ well-being both physically and mentally, so we offer coverage when it comes to private health insurance

  • We're an equal-opportunity employer and are looking to make Lendable the most inclusive and open workspace in London

Check out our blog!


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.