Computer Vision Engineer

Fogsphere - A Trading Name of Redev AI Ltd.
City of London
19 hours ago
Applications closed

Related Jobs

View all jobs

Computer Vision Engineer

Computer Vision Engineer

Computer Vision Engineer

Computer Vision Engineer

Computer Vision Engineer

Computer Vision Engineer

Fogsphere is a London‑based innovator focused on transforming workplace and urban safety through advanced AI, Computer Vision, and Industrial IoT. Built on a principled “Edge‑to‑Fog‑to‑Cloud” architecture, our platform turns passive CCTV cameras and sensors into proactive hazard detectors, capable of identifying threats like missing PPE, fire, smoke, restricted access violations, and more—in real time and at scale. This helps organizations across industries—from manufacturing, construction, oil & gas, and healthcare to smart cities—reduce workplace accidents by up to 90%, ensure regulatory compliance (EHS), and gain powerful operational insights. Fogsphere’s intuitive no‑code visual workflows, hyper‑scalable Kubernetes‑based infrastructure, and commitment to ethical AI and privacy (GDPR compliance) make it a user‑friendly yet enterprise‑grade solution.

About the Role

We are seeking a highly motivated Computer Vision Engineer with a strong background in Deep Learning to join our AI/ML team. You will focus on developing, training, and optimizing models for computer vision applications, working with large-scale image/video datasets, and deploying cutting-edge deep learning solutions into production environments.

Key Responsibilities

  • Design, train, and evaluate deep learning models for computer vision tasks (e.g., classification, detection, segmentation, tracking, retrieval…).
  • Build and maintain scalable data pipelines for training and evaluation.
  • Optimize model architectures for performance, accuracy, and efficiency (e.g., pruning, quantization, distributed training).
  • Contribute to research and prototyping of novel computer vision algorithms.
  • Deploy trained models into production environments in collaboration with software engineering teams.
  • Document workflows and contribute to team knowledge-sharing.

Qualifications

  • MSc in Computer Vision , Machine Learning , Artificial Intelligence , or related field.
  • 2+ years of hands-on experience in deep learning model development and training.
  • Strong proficiency with Python and ML frameworks ( PyTorch , TensorFlow , or Keras ).
  • Solid understanding of CNNs, and ViTs
  • Experience with dataset preparation, augmentation, and preprocessing for computer vision.
  • Strong knowledge of optimization techniques, hyperparameter tuning, and evaluation metrics.
  • Good software engineering practices: version control (Git), code testing, reproducibility.
  • Experience working with MLOps frameworks (e.g., MLflow, Weights & Biases, Kubeflow).

Preferred Skills (nice-to-have)

  • Experience on VLM fine-tuning.
  • Knowledge of cloud platforms ( AWS , GCP , Azure ) for model training and deployment.
  • Background in multimodal AI (vision + language).
  • Contributions to open-source CV/ML projects or publications in top conferences (CVPR, ICCV, NeurIPS, ECCV, TPAMI…).
  • Knowledge on TRT.
  • Experience on edge computing applications.
  • Experience on ANPR and/or Face Recognition, and/or Image Retrieval in general.

What We Offer

  • ZERO micromanagement. At Fogsphere, researchers work independently under the Head of Research, with a focus on open discussion and professional development, where the best ideas are the ones applied.
  • Opportunity to work on cutting-edge computer vision challenges in some of the largest deployments in the field.
  • Possibility to publish papers and collaborate with academia on this task.
  • Collaborative environment with a team of AI researchers and engineers based on multiple countries.
  • Working with academics in the field to help building cutting-edge methods.
  • Competitive salary and benefits package.
  • Career growth and continuous learning opportunities.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.