Co-CEO

Lawrence Harvey
London
1 year ago
Applications closed

Related Jobs

View all jobs

Audio Machine Learning Engineer

Computer Vision and Artificial Intelligence Engineer

Lead Data Scientist - eCommerce

Lead Data Scientist - Marketing Science

Consultant, Data Science and Business Analyst, AI & Data, Defence & Security

Graduate Data Scientist

Co-CEO


Do you want to revolutionise the world of robotics?


This position combines technical innovation with strategic vision, offering a unique opportunity to pioneer advancements at the intersection of AI and robotics.


Responsibilities

  • Partner with the CEO, CTO, and leadership team to drive vision, strategy, and execution.
  • Lead from the front, shaping the future of the organisation and its impact.
  • Stay at the cutting edge of advancements in robotics and AI methodologies.
  • Ensure compliance with industry standards and regulatory requirements.


Expertise

  • Ph.D. or equivalent experience in computer science, artificial intelligence, machine learning, or a related field, with a focus on robotics or AI/ML.
  • Proven experience in strategy, vision-setting, leadership, fundraising, and start-up environments.
  • A creative, curious mindset with a passion for solving real-world problems in robotics.
  • Exceptional problem-solving and analytical skills to tackle complex challenges.
  • Strong communication and collaboration skills to lead cross-functional teams effectively.
  • Deep knowledge of industry trends and advancements in robotics, backed by a track record of impactful publications and projects.
  • Previous experience as a Co-Founder or CEO


Location:London (hybrid working) with travel to other offices.


Compensation:Competitive salary + equity + benefits.


This is your chance to lead groundbreaking work in AI and robotics, influencing the next generation of autonomous systems and driving significant innovation within robotics.


If you’re ready to make a lasting impact, we’d love to hear from you!

If you’re ready to co-lead a revolutionary journey toward a future of abundance, we’d love to hear from you. Let’s push the boundaries of possibility together.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.