AIML - Machine Learning Engineer, Siri Automatic Speech Recognition Accuracy Iteration

Apple
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

AI/MLOps Platform Engineer

AI/MLOps Platform Engineer

AI/MLOps Platform Engineer

Senior Data Scientist: AI/ML on Google Cloud (On-site)

Senior Data Scientist - AI/ML MVPs for B2B Insights

Senior Full-Stack AI/ML Engineer - MLOps & Production

Summary:
We are looking for engineers passionate about using machine learning to build and maintain multiple machine learning products that power Siri. In this highly accomplished, deeply technical, and close-knit team of machine learning specialists, software engineers, and infrastructure experts, you will build products that are used by millions of people. You will have the opportunity to contribute to exciting projects around Apple and use your data science, machine learning, and analytical skills to tackle challenging technical problems and ship novel products that will delight our customers!
Key Qualifications:
3+ years of experience in machine learning, natural language processing, Mastery of two of following languages: Python, Go, Java, C++ Excellent knowledge and good practical skills in major machine learning algorithms Strong data analytical skills An extraordinary teammate with strong interpersonal skills
Description:
You will be a part of a team that's responsible for a wide variety of speech-related development activities, including acoustic modeling, language modeling, model evaluations, text formatting and tools development. Our speech recognition research is typically data driven, and we are particularly excited about unsupervised and supervised techniques to leverage large quantities of data. You should be enthusiastic about building phenomenal products. Because you'll be working closely with researchers and engineers from a number of other teams at Apple, you're a standout colleague who thrives in a collaborative environment.
Additional Requirements:

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.