AIML - Machine Learning Engineer, Siri Automatic Speech Recognition Accuracy Iteration

Apple
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

AI/ML Data Scientist - Drive Cross-Dept Insights

AI/ML Data Scientist – Generative AI & MLOps on GCP

AI/ML Engineer: NLP, CV & MLOps Expert

Applied AIML Lead- Python & Data Science Engineering

Applied AIML Lead- Python & Data Science Engineering

Senior Full-Stack AI/ML Engineer (Production & MLOps)

Summary:
We are looking for engineers passionate about using machine learning to build and maintain multiple machine learning products that power Siri. In this highly accomplished, deeply technical, and close-knit team of machine learning specialists, software engineers, and infrastructure experts, you will build products that are used by millions of people. You will have the opportunity to contribute to exciting projects around Apple and use your data science, machine learning, and analytical skills to tackle challenging technical problems and ship novel products that will delight our customers!
Key Qualifications:
3+ years of experience in machine learning, natural language processing, Mastery of two of following languages: Python, Go, Java, C++ Excellent knowledge and good practical skills in major machine learning algorithms Strong data analytical skills An extraordinary teammate with strong interpersonal skills
Description:
You will be a part of a team that's responsible for a wide variety of speech-related development activities, including acoustic modeling, language modeling, model evaluations, text formatting and tools development. Our speech recognition research is typically data driven, and we are particularly excited about unsupervised and supervised techniques to leverage large quantities of data. You should be enthusiastic about building phenomenal products. Because you'll be working closely with researchers and engineers from a number of other teams at Apple, you're a standout colleague who thrives in a collaborative environment.
Additional Requirements:

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.