Applied AIML Lead- Python & Data Science Engineering

J.P. Morgan
Glasgow
17 hours ago
Create job alert

If you are looking for a game-changing career, working for one of the world's leading financial institutions, you’ve come to the right place.


As an Applied AIML Engineer, you provide expertise and engineering excellence as an integral part of an agile team to enhance, build, and deliver trusted market-leading technology products in a secure, stable, and scalable way. Leverage your advanced technical capabilities and collaborate with colleagues across the organization to drive best-in‑class outcomes across various technologies to support one or more of the firm’s portfolios.


Job responsibilities

  • Co-Develop and implement LLM-based, machine learning models and algorithms to solve complex operational challenges.
  • Design and deploy generative AI applications to automate and optimize business processes.
  • Collaborate with stakeholders & Data Scientists to understand business needs and translate them into technical solutions.
  • Analyze large datasets to extract actionable insights and drive data‑driven decision‑making.
  • Ensure the scalability and reliability of AI/ML solutions in a production environment.
  • Stay up-to-date with the latest advancements in AI/ML technologies & LLMs and integrate them into our operations.
  • Mentor and guide junior team members in coding & SDLC standards, AI/ML best practices and methodologies.

Required qualifications, capabilities, and skills

  • Master’s or Bachelors in Computer Science, Data Science, Machine Learning, or a related field, with a focus on engineering.
  • Excellent API design and engineering experience with proven usage of API python frameworks Quart, Flask or FastAPI
  • Proficiency in Python & async programming, with a strong emphasis on writing comprehensive test cases using testing frameworks such as pytest to ensure code quality and reliability
  • Expertise with Index & Vector DBs such as Opensearch./ElasticSearch
  • Extensive experience in deploying AI/ML applications in a production environment, with skills in deploying models on AWS platforms such as SageMaker or Bedrock.
  • Champion of MLOps practices, encompassing the full cycle from design, experimentation, deployment, to monitoring and maintenance of machine learning models.
  • Experience with generative AI models, including GANs, VAEs, or transformers. Experience with Diffusion models is a plus.
  • Solid understanding of data preprocessing, prompt engineering, feature engineering, and model evaluation techniques.
  • Proficiency in AI coding tools and editors such as Cursor, Windsurf or CoPilot
  • Familiarity in machine learning frameworks such as TensorFlow, PyTorch, PyTorch Lightning, or Scikit-learn.
  • Familiarity with cloud platforms (AWS) and containerization technologies (Docker, Kubernetes, Amazon EKS, ECS).

Preferred qualifications, capabilities, and skills

  • Expertise in cloud storage such as RDS and S3
  • Excellent problem-solving skills and the ability to work independently and collaboratively.
  • Strong communication skills to effectively convey complex technical concepts to non-technical stakeholders.
  • Proven experience in leading projects and teams, with a track record of successful project delivery.


#J-18808-Ljbffr

Related Jobs

View all jobs

Applied AIML Lead- Python & Data Science Engineering

Senior Applied AIML Lead | Python & Data Science Engineer

Senior RF AI/ML Data Scientist — DSP & SDR Onsite

Senior Data Scientist - AI/ML (CADD)

NLP / LLM Scientist – Applied AI ML Lead – Machine Learning Centre of Excellence

NLP / LLM Scientist - Applied AI ML Lead - Machine Learning Centre of Excellence

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.