AI Tech Lead – Agentic AI, LangGraph, ML, Python, CI/CD, LLM’s, Early-Stage Startup, UK Remote

WMtech
Bristol
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

frog -Managing Consultant - Data Science (Customer Data)

frog - Senior Consultant - Data Science (Customer Data)

AI & Data Science Manager / Senior Manager

AI & Data Science Manager / Senior Manager

Senior/Lead Data Scientist

AI Tech Lead – Agentic AI, LangGraph, ML, Python, CI/CD, LLM’s, Early-Stage Startup, UK Remote


About the Role


A mission-driven, early-stage startup is looking for anAI Tech Leadto join its growing team. This is a hands-on leadership role where you’ll help shape a cutting-edge AI platform designed to drive real-world behaviour change and improve human performance and wellbeing.


Backed by strong funding, this product-focused team of senior engineers operates in a low-ego, high-collaboration culture. The platform's first focus is on employee wellbeing in high-stress industries—and the mission is just getting started.


You’ll lead a cross-functional team of backend and machine learning engineers, guiding architecture, mentoring team members, and staying close to the code. This is a rare opportunity to build both product and team in a fast-moving environment with purpose at its core.


What You’ll Do

  • Lead and mentor a senior engineering team working across backend, ML, and infrastructure.
  • Play key role in design, development, and deployment AI applications using LLM's, Agentic framework, and other related technologies
  • Own technical direction for core systems, focusing on scalability, performance, and reliability.
  • Write clean, maintainable code and contribute actively to the codebase.
  • Define and uphold engineering best practices (code quality, CI/CD, observability, etc.).
  • Collaborate closely with the CTO and product team to align technical delivery with strategic goals.
  • Continuously improve team operations, development workflows, and developer experience.
  • Play a key role in hiring and onboarding as the team grows.


What We’re Looking For

  • 7+ years of commercial software engineering experience with a strong backend focus.
  • Proven ability to lead engineering projects and/or teams.
  • Experience with LangGraph, and a good understanding of agentic patterns (e.g. self-reflection, prompt/response-optimisation, multi-modal guardrails, cross-reflection, role-based cooperation)
  • Hands-on experience in launching GenAI products, including agentic systems and multi-agent frameworks, driving real-world AI applications from concept to deployment.
  • Experience in fast-paced or startup environments.
  • BSc in Computer Science, Data Science, or related technical discipline.
  • Strong communication skills and a bias toward action.


Technologies You’ll Work With

Experience in some or most of the following:


  • Languages/Frameworks:Python, FastAPI, Pydantic, Streamlit (for internal tools)
  • AI:AgenticFlows, GenAI, LLMs, and multimodal systems
  • Architecture:Microservices, RESTful APIs, async programming
  • Infrastructure:Docker, Terraform, GitHub Actions, GCP (preferred)
  • Datastores:MongoDB, Redis
  • Monitoring/Tooling:Prometheus, Grafana, Sentry


The role is remote with occasional travel


Ready to lead and build with purpose?

If you're excited by the idea of applying your engineering skills to something meaningful, please send your CV to


WMtech

WMtech is trusted by leaders in the Cyber Security, AI and Enterprise Software sectors to advise on talent strategy specifically for Start-Ups. Our clients are heavily VC backed, unicorn status, pre-IPO start-ups with pioneering technology.


WMTech is an equal opportunity employer and does not discriminate in employment on the basis of race, color, religion, sex (including pregnancy and gender identity), national origin, political affiliation, sexual orientation, marital status, disability, genetic information, age, membership in an employee organization, retaliation, parental status, military service, or other non-merit factor

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.