Senior Data Scientist, Payments Foundation Models

Visa
Cambridge
3 weeks ago
Applications closed

Related Jobs

View all jobs

Data Science Manager (Metaheuristics)

Data Science Manager (Metaheuristics)

Data Science Manager (Metaheuristics)

Data Science Manager, Payments

Senior MLOps Engineer

Senior Data Scientist

This job is brought to you by Jobs/Redefined, the UK's leading over-50s age inclusive jobs board.


Company Description

Visa is a world leader in payments and technology, with over 259 billion payments transactions flowing safely between consumers, merchants, financial institutions, and government entities in more than 200 countries and territories each year. Our mission is to connect the world through the most innovative, convenient, reliable, and secure payments network, enabling individuals, businesses, and economies to thrive while driven by a common purpose - to uplift everyone, everywhere by being the best way to pay and be paid.


Make an impact with a purpose-driven industry leader. Join us today and experience Life at Visa.


Job Description
What it's all about -

The Payments Foundation Models team is a new, high-impact initiative within Visa's Data Science organisation. Based in Cambridge, UK, and working closely with global Visa engineering and product teams, the group's mission is to build the next generation of payments-focused foundation AI models. These models will power a range of premium Risk and Identity Solutions (RaIS) products, such as fraud scores, with the goal of generating more than 100M dollars in new revenue by FY2030 and may be extended into other domains such as credit risk modelling or agentic commerce personalization.


In your role as Senior Data Scientist - Payments Foundation Models you will help us achieve our goals and deliver success on behalf of our customers by:



  • Developing, training, evaluating, documenting and disseminating Payments Foundation Models for use in data science and AI projects across Visa.
  • Collaborating across the organization with engineering, data science, research, product and commercial teams to improve the quality, adoption and real-world impact of our models.
  • This is a hands‑on technical role in the Individual Contributor track at the Consultant or Manager level, with scope to influence data science standards and practices while working on high‑impact, Visa‑scale systems.

Responsibilities:

We hire people with a willingness to adapt to a variable role, so along with the key responsibilities below, we ask for ownership of any other duties as required.



  • Collaborating with Product Managers & other members of the team to align on the highest value items to work on
  • Coordinating work across multiple teams & when needed, taking on additional "tech lead" responsibilities for driving initiatives to completion.
  • Identifying risks and testing assumptions before development
  • End‑to‑end processing and modelling of large data sets
  • Training deep learning models utilizing self‑supervised training, supervised fine‑tuning or adaptation approaches.
  • Ensuring new deep learning models successfully navigate model risk management processes, ensuring high quality documentation exists alongside analytics products (reports, presentations, visualizations)
  • Leading the deployment and maintenance of statistical models and algorithms\
  • Collaborating with data engineers to identify and implement improvements to tooling.
  • Enabling both technical and non‑technical colleagues by effectively communicating insights learnt during data science work
  • Evangelizing on the benefits of deep learning models within Visa
  • Recruiting for Data Scientists within the team
  • Improving team processes and providing input to future team strategy
  • Mentoring more junior members of the team as well as managing and prioritising their workload to ensure high‑quality output.
  • Developing a solid understanding of the fraud and financial crime industries

This is a hybrid position. Expectation of days in the office will be confirmed by your Hiring Manager.


Qualifications
What we'd like from you -
Preferred Qualifications:

  • Advanced degree in Data Science, Computer Science, Physics, Mathematics, or related field.
  • Strong background in machine learning, statistical modeling, and data engineering.
  • Enthusiasm for bringing cutting‑edge deep learning models into production at Visa‑wide scales.
  • Practical experience managing large‑scale datasets and conducting end‑to‑end analytics projects.
  • Proficiency with programming languages such as Python or R, and familiarity with SQL and big data tools.
  • Technical and analytical skills with the ability to pick up new technologies and concepts quickly.
  • Problem solving skills (especially in data‑centric applications).
  • Strong, clear, concise written and verbal communication skills.
  • Ability to manage and prioritise personal workload.
  • Excellent communication skills for technical and non‑technical stakeholders.
  • Proven ability to lead cross‑functional projects and mentor junior team members.
  • Ph.D. or other postgraduate level qualification with good mathematical background and knowledge of statistics.
  • Experience with fraud detection, risk analytics, or financial crime prevention.
  • Experience developing models within a model risk management framework.
  • Experience with version control software and workflows (e.g. git).
  • Experience with PyTorch or another deep learning framework.
  • Familiarity with the training and serving of artificial neural networks.
  • Subject matter expertise in the banking and payments industry.

Additional Information

Visa is an EEO Employer. Qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, sexual orientation, gender identity, disability or protected veteran status. Visa will also consider for employment qualified applicants with criminal histories in a manner consistent with EEOC guidelines and applicable local law.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.